• Title/Summary/Keyword: Magnetized

Search Result 270, Processing Time 0.019 seconds

Effect of the magnetized water supplementation on blood glucose, lymphocyte DNA damage, antioxidant status, and lipid profiles in STZ-induced rats

  • Lee, Hye-Jin;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.34-42
    • /
    • 2013
  • This study investigated the effects of magnetized water supplementation on blood glucose, DNA damage, antioxidant status, and lipid profiles in streptozotocin (STZ)-induced diabetic rats. There were three groups of 4-week-old male Sprague-Dawley rats used in the study: control group (normal control group without diabetes); diabetes group (STZ-induced diabetes control); and magnetized water group (magnetized water supplemented after the induction of diabetes using STZ). Before initiating the study, diabetes was confirmed by measuring fasting blood glucose (FBS > 200 dl), and the magnetized water group received magnetized water for 8 weeks instead of general water. After 8 weeks, rats were sacrificed to measure the fasting blood glucose, insulin concentration, glycated hemoglobin level, degree of DNA damage, antioxidant status, and lipid profiles. From the fourth week of magnetized water supplementation, blood glucose was decreased in the magnetized water group compared to the diabetes group, and such effect continued to the 8th week. The glycated hemoglobin content in the blood was increased in the diabetes group compared to the control group, but decreased significantly in the magnetized water group. However, decreased plasma insulin level due to induced diabetes was not increased by magnetized water supplementation. Increased blood and liver DNA damages in diabetes rats did significantly decrease after the administration of magnetized water. In addition, antioxidant enzyme activities and plasma lipid profiles were not different among the three groups. In conclusion, the supplementation of magnetized water not only decreased the blood glucose and glycated hemoglobin levels but also reduced blood and liver DNA damages in STZ-induced diabetic rats. From the above results, it is suggested that the long-term intake of the magnetized water over 8 weeks may be beneficial in both prevention and treatment of complications in diabetic patients.

Self-Shielding Magnetized vs. Shaped Parallel-Magnetized PM Brushless AC Motors

  • Pang Y.;Zhu Z. Q.;Howe D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.13-19
    • /
    • 2005
  • The performance of two designs of permanent magnet brushless motor, by having self-shielding magnetized magnets or sinusoidally shaped parallel-magnetized magnets with essentially sinusoidal airgap flux distributions, are compared. It is shown that the parallel-magnetized motor with shaped sintered NdFeB magnets can result in a higher airgap flux density and torque density than that of a self-shielding magnetized motor equipped with an anisotropic injection moulded NdFeB ring magnet.

Effects of Magnetized Medium on In Vitro Maturation of Porcine Cumulus Cell-Oocyte Complexes

  • Kim, Yun-Jung;Lee, Sang-Hee;Jung, Soo-Jung;Park, Choon-Keun
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • The objective of this study was to study the effect of magnetized water on porcine cumulus cell-oocyte complexes (COCs). Oocytes obtained from female pig were cultured in a medium magnetized at 0, 2000, 4000, and 6000 Gauss (G) for 5 minutes using the neodymium magnet. Subsequently, intracellular hydrogen peroxide ($H_2O_2$) concentration, glutathione (GSH) activity, oocyte membrane integrity, anti-apoptosis factor Bcl-xL expression, and nuclear maturation were analyzed. The intracellular $H_2O_2$ levels in COCs cultured for 44 hours were not significantly different among the variously magnetized samples. However, GSH activity were significantly higher in the magnetized samples compared to the 0 G sample. The Bcl-xL mRNA expression in COCs cultured for 44 hours was higher in the 4000 G sample than other treatment groups. Membrane damage in COCs cultured for 22 and 44 hours was significantly lower in 4000 G group than control group. On the other hand, nuclear stages as maturation indicator significantly increased in 2000, 4000, and 6000 G groups compared to 0 G group. These results indicate that incubation of porcine oocytes and cumulus cells in magnetized medium improves intracellular GSH levels, membrane integrity and nuclear maturation, and inhibits apoptosis in vitro.

The Properties of Weakly Magnetized Planar Type Inductively Coupled $SF_6$ Plasma (자화된 평판형 유도 결합 $SF_6$ 플라즈마의 특성)

  • Yoon, Cha-Keun;Doh, Hyun-Ho;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.438-440
    • /
    • 1995
  • The impedance characteristics and plasma parameters were experimentally studied in a weakly magnetized planar type, inductively coupled plasma (ICP) system. Compared with non-magnetized for system higher power transfer efficiency, stable impedance matching, enhancement of plasma density and higher electron temperature can be obtained. Such improvements are mainly due to the excitation of deeply penetrating electromagnetic wave and reduction of radial loss of electrons. In particulary, $SF_6$ (sulfur hexafluride) plasma shows unstable impedance matching in non-magnetized ICP because electronegativity of $SF_6$ effects on plasma characteristics. But, magnetized inductively coupled $SF_6$ plasma shows enough impedance matching stability to be applicable to the polysilicon etching in semiconductor process.

  • PDF

A Study on Magnetized Inductively Coupled Plasma Using Cutoff Probe (Cutoff Probe를 이용한 자화유도결합 플라즈마의 특성 연구)

  • Son, Eui-Jeong;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1706-1711
    • /
    • 2016
  • Electromagnetic wave simulation was performed to predict characteristics of manufactured cutoff probe at low temperature magnetized plasma medium. Microwave cutoff probe is designed for research the properties of magnetized inductively coupled plasma. It was shown that the cutoff probe method can safely be used for weakly magnetized high density plasma sources. Cutoff probe system with two port network analyzer has been prepared and applied to measure electron density distributions in large area, 13.56MHz driven weakly magnetized inductively coupled plasma source. The results shown that, the plasma frequency confirmed cut-off characteristics in low temperature plasma. Especially, cut-off characteristics was found at upper hybrid resonance frequency in the environment of the magnetic field. In case of a induced weak magnetic field in inductively coupled plasma, plasma density estimated from the cutoff frequency in the same way at unmagnetized plasma due to nearly same plasma frequency and upper hybrid resonance frequency. The plasma density is increased and uniformity is improved by applying a induced weak magnetic field in inductively coupled plasma.

The Potential Barrier Scavenging Effects of the Charged Colloidal Semiconductors at the Magnetized SrO${\cdot}6Fe_{2}O_{3}$ Ceramics Interfaces (자화된 SrO${\cdot}6Fe_{2}O_{3}$ Ceramics 계면에서 대전된 colloid 반도체의 전위장벽 청소효과)

  • Jang Ho Chun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.22-27
    • /
    • 1992
  • The cyclic voltammogram characteristics at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ ceramics/(($10^{-3}$M KCI + p-Si powders) and /(($10^{-4}$M CsNO$_3$ + n-GaAs powders) suspension interfaces have been studied using the microelectrophoresis and the cyclic voltammetric method. The negatively charged ions are specifically absorbed on the virgin and the magnetized SrO${\cdot}6Fe_{2}O_{3}$ ceramics surfaces. The zeta potentials of the p-Si and n-GaAs colloidal semiconductors are + 41mV and -44.8mV, respectively. The magnetization effects act as potential barriers at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ interfaces. The positivelely charged p-Si and the negatively charged n-GaAs colloidal semiconductors act as potential barriers at the virgin SrO${\cdot}6Fe_{2}O_{3}$ interfaces. On the other hand, the charged p-Si and n-GaAs colloidal semiconductors act as potential barrier scavengers at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ interfaces. The magnetization effects and the charged colloidal semiconductor effects are irreversible and interdependent.

  • PDF

Comparison and Analysis for Open-circuit Field of PM Machines with Halbach and Circumferential Magnetized Rotor (Halbach자화 및 원주방향 자화된 회전자를 갖는 영구자석 기기의 무부하시 자계분포 특성해석 및 비교)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;Yang, Hyun-Sup;Lee, Sung-Ho;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.86-88
    • /
    • 2004
  • This paper deals with the comparison and analysis for open-circuit field of PM(permanent magnet) machines with Halbach and circumferential magnetized rotor. The governing equation is derived in terms of magnetic vector potential and 2-d polar coordinate. And then, analytical results has been verified by comparison with those obtained from FE(finite element) method. On the basis of 2-d analytical results, this paper confirms that PM machines with circumferential magnetized rotor is superior to it with Halbach magnetized rotor in terms of magnitude and sinusoidal wave-forms of flux density due to PM and required magnet volume.

  • PDF

Parametric Analysis of Tubular-Type Linear Magnetic Couplings with Halbach Array Magnetized Permanent Magnet by Using Analytical Force Calculation

  • Kim, Chang-Woo;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.110-114
    • /
    • 2016
  • Magnetic couplings are widely used in various industrial applications because they can transmit magnetic force without any mechanical contact. In addition, linear couplings have many advantages. For example, they do not need to convert rotary motion to linear motion. This paper shows an analytical analysis of tubular type linear magnetic couplings (TLMCs) with a Halbach array magnetized permanent magnet (PM). An analytical method for magnetic fields owing to PMs is performed by using magnetic vector potential as well as Poisson and Laplace equations. Then, the magnetic force is calculated by using the Maxwell stress tensor. The analytical analysis results were compared with finite element method (FEM) results. In addition, we predicted the magnetic force characteristic according to design parameters such as the iron core thickness, inner PM thickness to -outer PM thickness ratio, PM segment ratio of the axial magnetized PM segment and radial magnetized PM segment, and various pole numbers.

Fault Current Limitation by a Superconducting Coil with a Reversely Magnetized Core for a Fault Current Controller

  • Ahn, Min Cheol;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.36-40
    • /
    • 2012
  • This paper presents an experimental and numerical study on current limiting characteristics of a fault current controller (FCC). The FCC consists of an AC/DC power converter, a superconducting coil, and a control unit. Even though some previous researches proved that the FCC could adjust the fault current level, the current limiting characteristics by the superconducting coil should be investigated for design of the coil. In this paper, four kinds of model coils were tested; 1) air core, 2) iron core without any bias, 3) reversely magnetized core (RMC) using permanent magnets, and 4) RMC using an electromagnet. Based on a comparative study, it is confirmed that a RMC by an electromagnet (EM) could increase the effective inductance of the coil. In this paper, a numerical code to simulate the HTS coil with RMC was developed. This code can be applied to design the HTS coil with active reversely magnetized bias coil.

A study on the high selective oxide etching using magnetized helical resonator plasma source (자화된 헬리칼 공진기 플라즈마 소스를 이용한 고선택비 산화막 식각에 관한 연구)

  • Lee, Su-Bu;Im, Seung-Wan;Lee, Seok-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.309-314
    • /
    • 1999
  • The magnetized helical resonator plasma etcher has been built. Electron density and temperature were measured as functions of rf source power, axial magnetic field, and pressure. The results show electron density increases as the magnetic field increases and reached $2\times1012cm^{-3}$,/TEX>. The oxide etch rate and selectivity to polysilicon were investigated as the above mentioned conditions and self-bias voltage. We can obtain the much improved oxide etch selectivity to polysilicon (60 : 1) by applying the external axial weak magnetic field in magnetized helical resonator plasma etcher.

  • PDF