• Title/Summary/Keyword: Magnetite nanoparticles

Search Result 66, Processing Time 0.027 seconds

Self-Assembly and Photopolymerization of Diacetylene Molecules on Surface of Magnetite Nanoparticles

  • Vinod, T.P.;Chang, Ji-Hoon;Kim, Jin-Kwon;Rhee, Seog-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.799-804
    • /
    • 2008
  • An amphiphilic diacetylene compound was deposited on the surface of nano sized magnetite particles ($Fe_3O_4$) using a self-assembly method. The diacetylene molecular assembly formed on the surface of nanoparticle was subjected to photopolymerization. This resulted in the formation of a polymeric assembly on the surface of the nanoparticles in which the adjacent diacetylene molecules were connected through conjugated covalent networks. The presence of immobilized polymer species on the surface of nanoparticles is expected to protect them from agglomeration and ripening, thereby stabilizing their physical properties. In this work, $Fe_3O_4$ nanoparticles were prepared by chemical coprecipitation method and the diacetylene molecule 10,12- pentacosadiynoic acid (PCDA) was anchored to the surface of $Fe_3O_4$ nanoparticles through its carboxylate head group. Irradiation of UV light on the nanoparticles containing immobilized diacetylenes resulted in the formation of a polymeric assembly. Presence of diacetylene molecules on the surface of nanoparticles was confirmed by X-ray photoelectron spectroscopy and FT-IR measurements. Photopolymerization of the diacetylene assembly was detected by UV-Visible spectroscopy. Magnetic properties of the nanoparticles coated with polymeric assembly were investigated with SQUID and magnetic hysteresis showed superparamagnetic behaviors. The results put forward a simple and effective method for achieving polymer coating on the surface of magnetic nanoparticle.

Magnetization of Magnetite Ferrofluid Studied by Using a Magnetic Balance

  • Jin, Daeseong;Kim, Hackjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1715-1721
    • /
    • 2013
  • Magnetic properties of magnetite ferrofluid are studied by measuring magnetic weights under different magnetic fields with a conventional electronic balance. Magnetite nanoparticles of 11 nm diameter are synthesized to make the ferrofluid. Magnetization calculated from the magnetic weight reveals the hysteresis and deviates from the Langevin function at high magnetic fields. Magnetic weight shifts instantaneously with magnetic field change by Neel and Brown mechanism. When high magnetic field is applied to the sample, slower change of magnetic weight is accompanied with the instantaneous shift via agglomeration of nanoparticles. The slow change of the magnetic weight shows the stretched exponential kinetics. The temporal change of the magnetic weight and the magnetization of the ferrofluid at high magnetic fields suggest that the superparamagnetic sample turns into superspin glass by strong magnetic interparticle interactions.

Ring Oxpening Polymerization of D,L-Lactide on Magnetite Nanoparticles

  • Tian Jing;Feng Ya-Kai;Xu Yong-Shen
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.209-213
    • /
    • 2006
  • The ring-opening polymerization of D,L-lactide initiated by tin(II) 2-ethylhexanoate $(Sn(Oct)_2)$ on the surface-initiated magnetite $(Fe_{3}O_4)$ nanoparticles was performed at $130^{\circ}C$. The effects of the polymer molar mass and concentration on the amount of surface polymer were investigated. The number average molecular weights, $M_n$, obtained by both NMR and GPC methods fit well within the accuracy of the applied methods and ranged from 1,100 to $4,040g\;mol^{-1}$. A surface functionalization density of up to 625 initiation sites per particle was obtained. The composition of various core-shell particles was determined by TGA, with results indicating magnetite $(Fe_{3}O_4)$ contents, ${\mu}m$, between 17 and 59 wt%. Under the influence of a magnetic field, the heating generated by superparamagnetic core-shell particles suspended in toluene presented guidelines for an optimization of magnetic particle systems with respect to an application for hyperthermia.

Microbial Synthesis of Cobalt-Substituted Magnetite Nanoparticles by Iron Reducing Bacteria (미생물을 이용한 나노입자의 코발트로 치환된 자철석의 합성)

  • Yul Roh;Hi-Soo Moon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. Cobalt-substituted magnetite nanoparticles were synthesized by a thermophilic iron(III)-reducing bacterium, TOR-39, under anaerobic conditions using amorphous Fe(III) oxyhydroxides plus cobalt ( $Co^{2+}$ and $Co^{3+}$ ) as an electron acceptor and organic carbon as an electron donor. Microbial processes produced copious amounts of nm-sized cobalt substituted magnetites. Chemical analysis and X-ray powder diffraction analysis showed that cobalt was substituted into biologically facilitated magnetites. Microbially facilitated synthesis of the cobalt-substituted magnetites may expand the possible use of the specialized ferromagnetic particles.

  • PDF

Preparation of Magnetite Nanoparticles by Two Step Reaction (2단계 반응에 의한 마그네타이트 나노입자의 제조)

  • Shin, Dae-Kyu;Riu, Doh-Hyung
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.

Adsorption of Methylene Blue on Titanate Nanotubes Synthesized with Ultra-Small Fe3O4 Nanoparticles

  • Marc, Maciej;Dudek, Miroslaw R.;Koziol, Jacek J.;Zapotoczny, Bartlomiej
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850142.1-1850142.9
    • /
    • 2018
  • Modified titanate nanotubes (TNT) were tested for their adsorption of methylene blue (MB) from water solutions. They were obtained from the $TiO_2$ nanopowder using a standard alkaline hydrothermal method but in the stage of acid washing, when the titanate flakes begin to roll into nanotubes, magnetite nanoparticles were added. The $Fe_3O_4$ magnetic nanoparticles with diameter of around 2 nm and 12 nm were used in the tests. Significantly stronger adsorption of MB was observed when smaller nanoparticles were used compared to using larger nanoparticles and compared to the case of unmodified nanotubes. It was shown that the increased adsorption of MB is associated with a more negative value of ${\zeta}$-potential for titanates modified by the ultra-small nanoparticles. In the adsorption experiment, pH 7 was selected. These results may prove to be of great importance in the case of potential applications corresponding to the use of such material for wastewater purification.

Effect of nucleating agents and stabilisers on the synthesis of Iron-Oxide Nanoparticles-XRD analysis

  • Butt, Faaz A.;Jafri, Syed M. Mohsin
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.169-176
    • /
    • 2015
  • Iron nanoparticles were made by using the modified coprecipitation technique. Usually the characteristics of synthesised particles depend upon the process parameters such as the ratio of the iron ions, the pH of the solution, the molar concentration of base used, type of reactants and temperature. A modified coprecipitation method was adopted in this study. A magnetic stirrer was used for mixing and the morphology and nature of particles were observed after synthesis. Nanoparticles were characterised through XRD. Obtained nanoparticles showed the formation of magnetite and maghemite under citric acid and oxalic acid as stabilisers respectively. The size of nanoparticle was greatly affected by the use of different types of stabilisers. Results show that citric acid greatly reduced the obtained particle size. Particle size as small as 13 nm was obtained in this study. The effects of different kinds of nucleating agents were also observed and two different types of nucleating agents were used i.e. potassium hydroxide (KOH) and copper chloride ($CuCl_2$). Results show that the use of nucleating agent in general pushes the growth phase of nanoparticles towards the end of coprecipitation reaction. The particles obtained after addition of nucleating agent were greater in size than particles obtained by not utilising any nucleating agent. These particles have found widespread use in medical sciences, energy conservation and electronic sensing technology.

Surface Modification of Magnetites Using Maltotrionic Acid and Folic Acid for Molecular Imaging

  • Selim, K.M.Kamruzzaman;Lee, Joo-Hee;Kim, Sun-Jung;Xing, Zhicai;Kang, Inn-Kyu;Chang, Yong-Min;Guo, Haiqing
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.646-653
    • /
    • 2006
  • Highly hydrophilic, uniform, superparamagnetic and nontoxic maltotrionic acid (MA)-coated magnetite nano-particles (MAM) were prepared and characterized by TEM, DLS, XRD and VSM. MA was used to improve the biocompatibility, monodispersity and non-specific intracellular uptake of nanoparticles. Folic acid (FA) was subsequently conjugated to the MAM to preferentially target KB cells (cancer cells) that have folate receptors expressed on their surfaces and to facilitate nanoparticles in their transit across the cell membrane. Finally, fluorescence isothiocyanate (FITC) was added to the nanoparticles to visualize the nanoparticle internalization into KB cells. After the cells were cultured in a media containing the MAM and MAM-folate conjugate (FAMAM), the results of fluorescence and confocal microscopy showed that both types of nanoparticles were internalized into the cells. Nevertheless, the amount of FAMAM uptake was higher than that of MAM. This result indicated that nanoparticles modified with MA and FA could be used to facilitate the nanoparticle uptake to specific KB cells (cancer cells) for molecular imaging.

Impact of Amino-Acid Coating on the Synthesis and Characteristics of Iron-Oxide Nanoparticles (IONs)

  • Ebrahiminezhad, Alireza;Ghasemi, Younes;Rasoul-Amini, Sara;Barar, Jaleh;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3957-3962
    • /
    • 2012
  • Iron-oxide nanoparticles (IONs) with biocompatible coatings are the only nanostructural materials which have been approved by the FDA for clinical use. Common biocompatible coatings such as hydrocarbons, polymers, and silica have profound influences on critical characteristics of IONs. Recently, amino acids were introduced as a novel biocompatible coating. In the present study, the effects of amino acids on IONs synthesis and characteristics have been evaluated. Magnetite nanoparticles with L-arginine and L-lysine coatings were synthesised by a coprecipitation reaction in aqueous solvent and their characteristics were compared with naked magnetite nanoparticles. The results showed that amino acids can be a perfect coating for IONs and would increase particle stability without any significant effects on the critical properties of nanoparticles such as particle size and magnetization saturation value.

Immobilization of the Thenoyltrifluoroacetone on Sodium Dodecyl Sulfate Modified Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb (II) from Water Samples

  • Sadeghi, Meysam;Yekta, Sina;Babanezhad, Esmaeil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.636-647
    • /
    • 2016
  • Magnetite nanoparticles ($Fe_3O_4$ NPs) were synthesized by co-precipitating method under optimized condition. The $Fe_3O_4$ NPs coated with sodium dodecyl sulfate-thenoyltrifluoroacetone ($Fe_3O_4$ NPs-SDS-TTFA) were then exerted as the magnetic solid phase extraction (MSPE) adsorbent for the extraction process prior to introducing to a flame atomic adsorption spectrometry (FAAS). The synthesized $Fe_3O_4$ NPs-SDS-TTFA were applied for the extraction of Pb(II) ions from different water samples. The characterization studies of nanoparticles were performed via scanning electron microscopy-energy dispersive micro-analysis (SEM-EDAX), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) techniques. The substantial parameters affecting the extraction efficiency were surveyed and optimized. A dynamic linear range (DLR) of $10-400{\mu}g\;L^{-1}$ was obtained and the limit of detection (LOD, n=7) and relative standard deviation (RSD%, n= 6, $C=20{\mu}g\;L^{-1}$) were found to be $2.3{\mu}g\;L^{-1}$ and 1.9%, respectively. According to the results, the proposed method successfully applied for the extraction of Pb(II) ions from different environmental water samples and satisfactory results achieved.