• 제목/요약/키워드: Magnetically Levitated Vehicle

검색결과 40건 처리시간 0.031초

Characteristics of a Magnetically Levitated Vehicle using a Small Number of Dry Cell Batteries

  • Kakinoki, Toshio;Yamaguchi, Hitoshi;Mukai, Eiichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.200-206
    • /
    • 2014
  • This paper describes magnetically levitated vehicle with hybrid magnets, which have been studied by the authors in place of streetcars or conveyance system. An experimental vehicle of 20kg was magnetically levitated by using a small number of dry-cell batteries, which consisted of 10 Ni-MH cells of 1900mAh in series. The magnets were activated sequentially, because the internal resistance of the batteries suppressed the maximum current. The vehicle was kept levitating for about 2 hours and was stable against disturbance due to instantaneous external force. In this paper, dynamic characteristics of the magnetically levitated vehicle using a small number of dry cell batteries are presented.

불규칙 궤도외란을 받는 자기부상열차의 진동해석 및 2차현가장치 동적설계 (Vertical Vibration Analysis of a Magnetically Levitated Vehicle due to Random Track Disturbances and Dynamic Design of Its Secondary Suspensions)

  • 최영휴;허신;김유일
    • 연구논문집
    • /
    • 통권22호
    • /
    • pp.39-46
    • /
    • 1992
  • A dynamic design process was proposed for the design of the secondary suspension characteristics of a magnetically levitated vehicle(MAGLEV). It is based on a ride quality-secondary stroke trade-off. For the vertical vibration analysis, a magnetically levitated vehicle was simplified as 2 d.o.f. linear model, and FRA's class-6-track irregularities were considered as exciting disturbances. The optimum value of airspring stiffness and damping coefficient for the secondary suspension of a prototype MAGLEV was determined using this proposed design process.

  • PDF

손실 없는 하이브리드 자기부상열차 설계 (Design of Lossless Hybrid type Magnetically-Levitated Vehicle)

  • 김종문;강도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1553-1555
    • /
    • 2005
  • This paper presents a design of lossless hybrid-type magnetically-levitated vehicle. The lossless hybrid-type system is implemented by a permanent magnet and electromagnet. The target plant consists of eight hybrid-type magnets and in the steady-state, no current is needed to support the load. The design procedure is described and the results of this work are shown.

  • PDF

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.564-569
    • /
    • 2012
  • This paper proposes a hybrid-excited linear synchronous motor (LSM) that has potential applications in a magnetically levitated vehicle. The levitation and thrust force characteristics of the LSM are investigated by means of three-dimensional (3-D) numerical electromagnetic FEM calculations and experimental verification. Compared to a conventional LSM with electromagnets, a hybrid-excited LSM can improve levitation force/weight ratios, and reduce the power consumption of the vehicle. Because the two-dimensional (2-D) FE analysis model describes only the center section of the physical device, it cannot express the complex behavior of leakage flux, which this study is able to predicts along with levitation and thrust force characteristics by 3-D FEM calculations. A static force tester for a hybrid-excited LSM has been manufactured and tested in order to verify these predictions. The experimental results confirm the validity of the 3-D FEM calculation scheme for the description of a hybrid-excited LSM.

자기부상열차 모듈의 동특성 시뮬레이션 (Dynamic Simulation for Modules of a Magnetically-Levitated Vehicle)

  • 김종문
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.653-660
    • /
    • 2006
  • In this paper, dynamic simulation results for modules of a magnetically-levitated(Maglev) vehicle are presented. The mathematical dynamic models for the Maglev vehicle are firstly derived. The Maglev system consists of one vehicle, two half-bogies, one guideway, four secondary suspensions, eight electromagnets and levitation control systems. Also, the dynamic characteristics are analysed by using the derived models. Finally, two simulations such as reference airgap step change of 1mm and rail step change of 1mm, are carried out. The dynamic simulation results are shown to testify the developed dynamic simulation program. From the results, we can see the possibility of the dynamic simulation program to develop a new Maglev vehicle system.

A Turnout without Movable Parts for Magnetically Levitated Vehicles with Hybrid Magnets

  • Kakinoki, Toshio;Yamaguchi, Hitoshi;Yoshinaga, Naoya;Mukai, Eiichi;Nishi, Hiroyuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.312-316
    • /
    • 2014
  • This paper describes a turnout without movable parts for magnetically levitated vehicles with hybrid magnets, which have been studied by the authors in place of streetcars. Their low construction cost and low maintenance is key to their practical use. Magnetic levitation systems using forces of attraction can generate guidance force automatically, but the damping force against lateral motion is negligible. However, the lateral damping characteristic was improved by using divided iron type magnets and rails. Using this turnout without movable parts will facilitate smooth direction switching.

자기부상차량 현가시스템 설계에 대한 고찰 (Design Review for suspension system of magnetically levitated vehicle)

  • 이남진;양방섭;김철근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.364-371
    • /
    • 2008
  • In general Maglev (magnetically levitated vehicle) has about 4 or 5 bogies per one vehicle to improve stability of electromagnetic suspension and 4 air-spring per one bogie are to be equipped to prevent form excessive yawing and pitching motion of bogie. 3 leveling valve per one vehcile will be applied to control the height of carbody. This kind of vehicle is on the design stage, and design review will be carried out before manufacture. The suspension system of Maglev consists of 16 of air-spring, auxiliray reservoir and orifice, 3 leveling valve, which are different composition comparative to conventional rolling stock. To improve operational reliability of vehicle, additional ventilation valve will be equipped with airspring. This kind of new design concept requires fundamental design review. In this study, suspension systems of Maglev will be built as mathematical model. Then designed suspension system will be reviewed in view of various points through proposed suspension simulation.

  • PDF

자기부상열차의 동특성 시뮬레이션 (Dynamic Characteristics Simulation for Magnetically-Levitated Vehicle)

  • 김종문;김춘경;박민국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1134-1135
    • /
    • 2006
  • In this paper, dynamic simulation results for magnetically-levitated vehicles are resented. The dynamic equation and models for a half-bogie system are derived. The system includes primary suspension system, magnet module, spring-damper system and cabin. Also, the dynamic characteristics for the derived models are analysed. Using the results, levitation control algorithm can be designed to meet the performance requirements.

  • PDF

자기부상열차의 다이나믹 시뮬레이션 (Dynamic Simulation of Magnetically-Levitated Vehicle)

  • 김종문;배종일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.34-36
    • /
    • 2005
  • In this paper, dynamic simulation results for magnetically-levitated vehicles are presented. The dynamic equations and models for a half-bogie system are derived. They include primary suspension system, module, secondary suspension and cabin. Also, the dynamic characteristics for the derived models are analysed.

  • PDF

FLUX3D를 이용한 자기부상용 전자석의 특성 해석 (Characteristic Analysis of a Magnet for Magnetically Levitated Vehicle using FLUX3D)

  • 이재건;신판석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.127-129
    • /
    • 1996
  • A 3-dimensional analysis is desired for a magnet of magnetically levitated vehicle because the geometrical shape of the magnet is complicated and nonsymmetric. A FEM package of FLUX3D is used to analyze the characteristic of the magnet. Various quantities could be observed like levitation force, flux density distribution along the air gap, edge and fringing effect, leakage flux pattern, etc. The simulation results from FLUX3D are compared with those of 2-D analysis and test results. There are a little difference between results due to the boundary conditions and magnetized B-H curve of the core.

  • PDF