• Title/Summary/Keyword: Magnetic wireless communication

Search Result 91, Processing Time 0.032 seconds

Multi-Mode Wireless Power Transfer System with Dual Loop Structure (이중루프 구조를 갖는 다중모드 무선전력전송 시스템)

  • Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.578-583
    • /
    • 2016
  • In this paper, we propose a multi-mode wireless power transfer (WPT) system with a dual loop structure. The proposed multi-mode WPT system consist of outer loop module which can operate at two different frequency bands including 6.78 MHz magnetic resonance WPT mode and 13.56 MHz near field communication (NFC) mode and inner loop module connected with outer loop which can operate at two different frequency bands including WPC mode and PMA mode based on inductive coupling standards. In order to be able to embed this system into smartphone battery back cover, the electrical designs are optimized and then the size was fixed $45{\times}90{\times}0.35mm3$ (including ferrite sheet) which is the same commercial smartphone. The proposed multi-mode WPT module can cover WPC and PMA mode based on inductive coupling. Moreover, it has more than 20 dB return loss characteristics at two different frequency bands including 6.78 MHz and 13.56 MHz, and shows more than 70 % transfer efficiency between resonant coils at 6.78 MHz in magnetic resonant charging environment.

A Study on Coil Misalignment in a 3-Coil Magnetic Resonance Wireless Power Transmission System of a Electric Vehicle (전기자동차의 3-코일 자기공진방식 무선전력전송 시스템에서 코일의 비 정렬에 관한 연구)

  • Hwang, In-Gab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2021
  • The 3-coil magnetic resonance wireless power transmission system was analyzed using an equivalent circuit model, and the |S21| of the system was expressed as the equation of the Q of the three coils, the coupling coefficient k between the transmitting coil and the relay coil, the relay coil and the receiving coil. It is suggested that the maximum efficiency can be obtained when the relay coil is located in the center of the transmitting and the receiving coil. When the distance between the transmitting and the receiving coil is 30 cm and the two coils are aligned, maximum efficiency of 9 % is obtained with the relay coil centered between the coils. If the transmitting coil and the receiving coil are misaligned during a wireless charging of an electric vehicle, the efficiency is expected to decrease significantly compared to the aligned case. It is expected that the efficiency can be increased by using a relay coil and by rotating the coil.

A Novel Impedance Matching Topology for Magnetically Coupled Wireless Power Transfer

  • Lee, Gunbok;Park, Wee Sang
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.16-19
    • /
    • 2012
  • A modified 4-coil magnetic resonance wireless power transfer (MRWPT) system is proposed. Four coils based on 2-coil system with additional two matching coils were used in this topology. When Tx-Rx distance is changed, the input impedance is changed. However, it can be adjusted by coil parameters of matching coils to maintain impedance matching for maximum efficiency. The equivalent circuit of MRWPT system was analyzed for both transmission function and optimum coupling coefficient of the matching coils. By using four spiral resonant coils, these design considerations was experimentally verified. The measured data agreed well with the calculated data and the transmission function of the proposed system was more efficient than that of conventional 2-coil system.

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon;Yu, Ye Jin;Kim, Jang-Yeol;Lee, Jaewoo;Moon, Han Seb;Cho, In-Kui
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.

Tunnel Inspection and Monitoring System by Wireless Sensor Network (무선센서네트워크를 이용한 터널 모니터링 시스템)

  • Kim Hyung-Woo;Han Jin-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.91-94
    • /
    • 2006
  • In this paper, we deployed the tunnel inspection and monitoring system by wireless sensor network. It is shown that the wireless sensor network which is composed of sensor, wireless communication module, and gateway system can be applied to tunnel monitoring system. Sensors included herein are acceleration transducers, fire-alarm sensors, water-level sensors, and magnetic contact sensors. It is also found that the wireless sensor network can deliver sensing data reliably by ad-hoc networking technology. The gateway system that can send the sensing data to server by CDMA (code division multiple access) is developed. Finally, monitoring system is constructed by web service technology, and it is observed that this system can monitor the present state of tunnel without difficulties. Furthermore, the above system provides an alternative to inspect and monitor the tunnel efficiently where the conventional wired system cannot be applied.

  • PDF

A Review of Assistive Listening Device and Digital Wireless Technology for Hearing Instruments

  • Kim, Jin Sook;Kim, Chun Hyeok
    • Korean Journal of Audiology
    • /
    • v.18 no.3
    • /
    • pp.105-111
    • /
    • 2014
  • Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment.

Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization

  • Chung, Young-Seek;Lee, Byung-Je;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.286-293
    • /
    • 2009
  • In this paper, we present an optimal shape design method for a dielectric microlens which is used to focus an incoming infrared plane wave in wideband, by exploiting the finite difference time domain (FDTD) technique and the topology optimization technique. Topology optimization is a scheme to search an optimal shape by adjusting the material properties, which are design variables, within the design space. And by introducing the adjoint variable method, we can effectively calculate a derivative of the objective function with respect to the design variable. To verify the proposed method, a shape design problem of a dielectric microlens is tested when illuminated by a transverse electric (TE)-polarized infrared plane wave. In this problem, the design variable is the dielectric constant within the design space of a dielectric microlens. The design objective is to maximally focus the incoming magnetic field at a specific point in wideband.

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1195-1200
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. Indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks were implemented in the robot. Spartan III(Xilinx, U.S.A.) was used as a main control device in the mobile robot and the current direction data was collected in the indoor location estimation system. The data was transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

Development of Intelligent Self-alarming EAS System Using Dual-band Wireless Communication (듀얼밴드 무선통신기술을 이용한 지능형 자명식(自鳴式) 도난방지시스템 개발)

  • Choi, Yeon-Suk;Kim, Keum-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1616-1626
    • /
    • 2010
  • This paper will show how self-alarming EAS(Electronic Article Surveillance) system can improve its receiving performance of magnetic field signal and reduce false alarm using dual-band wireless communication. Our research improved the receiving performance and the areas of recognition of magnetic signal through the change of VLF receiving circuit and alarm transmitting method. In addition, we verified the reduction of false alarm by improvement of integrity and distance between tag and receiver through experiment. Thanks to our research, we can build the high performance and economical EAS with low false alarm on the multi gate store.

Realization of Alignment-Free WPT System

  • Park, Byung-Chul;Son, Yong-Ho;Jang, Byung-Jun;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.329-331
    • /
    • 2014
  • A simple realization of an alignment-free wireless power transmission (WPT) system is presented in this letter. The WPT system consists of a transmitter with three reconfigurable modes corresponding to various controllable magnetic field directions in the azimuthal plane and an algorithm for the optimum mode selection carried by sensing the reflected voltage of the system. Twelve light emitting diodes (LEDs) are used to confirm the on- and off-state of LEDs powered wirelessly by the transmitter at every $15^{\circ}$ of the azimuthal plane. A criterion voltage from the reflected power of the system is found by using the correlation between the reflected voltage and the on- and off-state of the LEDs. Simply by continuous; monitoring of the voltage from the system, the system maintains power to the LEDs. The system is realized by MATLAB/Simulink and a National Instrument data acquisition device (DAQ) board. Measurements using the system show on-state LEDs in the azimuthal plane except at the angles of $60^{\circ}$, $75^{\circ}$, $180^{\circ}$, and $300^{\circ}$.