• Title/Summary/Keyword: Magnetic suspension

Search Result 231, Processing Time 0.026 seconds

Optimal Design of Magnetorheological Shock Absorbers for Passenger Vehicle via Finite Element Method (자기유변유체를 이용한 승용차량 쇽 업소버의 유한요소 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • This paper presents optimal design of controllable magnetorheological(MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method(FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

MSBS-SPR Integrated System Allowing Wider Controllable Range for Effective Wind Tunnel Test

  • Sung, Yeol-Hun;Lee, Dong-Kyu;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.414-424
    • /
    • 2017
  • This paper introduces an experimental device which can measure accurate aerodynamic forces without support interference in wide experimental region for wind tunnel test of micro aerial vehicles (MAVs). A stereo pattern recognition (SPR) method was introduced to a magnetic suspension and balance system (MSBS), which can eliminate support interference by levitating the experimental model, to establish wider experimental region; thereby MSBS-SPR integrated system was developed. The SPR method is non-contact, highly accurate three-dimensional position measurement method providing wide measurement range. To evaluate the system performance, a series of performance evaluations including SPR system measurement accuracy and 6 degrees of freedom (DOFs) position/attitude control of the MAV model were conducted. This newly developed system could control the MAV model rapidly and accurately within almost 60mm for translational DOFs and 40deg for rotational DOFs inside of $300{\times}300mm$ test section. In addition, a static wind tunnel test was conducted to verify the aerodynamic force measurement capability. It turned out that this system could accurately measure the aerodynamic forces in low Reynolds number, even for the weak forces which were hard to measure using typical balance system, without making any mechanical contact with the MAV model.

A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation (불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Yang, Joo-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • Recently, the magnetic bearings which have many advantages such as no noise, less mechanical friction are widely applied to the suspension of rotors on the rotary machineries. However, the magnetic bearing system is inherently unstable, nonlinear and MIMO(multi-input-multi-output) system as well. In this paper, we design a state feedback controller using linear matrix inequality(LMI) to the multi-objective synthesis, for the magnetic bearing system with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, and time-domain constraints on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Magnetic Circuit Design Methodology of MR CDC Dampers for Semi-Active Suspensions (반능동 서스펜션용 MR CDC 댐퍼의 자기회로 설계기법)

  • Park, Jae-Woo;Jung, Young-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.48-57
    • /
    • 2008
  • MR Fluid, one of functional fluids, is developed for the application to automobile products. MR CDC damper using MR fluid has following principles. When ar electric current is applied to the solenoid, apparent viscosity of MR fluid passing through the annular gap which acts as magnetic circuits varies directly as the intensity of the current. These devices have a simple structure and excellent lime response characteristics, emerging as the alternatives of the conventional semi-active suspension systems. In this study, a design procedure of the magnetic circuit through the solenoid fore and the flux ring functioning as a magnetic path is investigated so as to optimize the design and performance of MR CDC dampers for the vehicles. In addition, an operating point on the B-H curve, the magnetization according to the variation in the annular gap, the pole piece width and the density of MR fluid are studied to design the optimal piston head within the restrained dimension range.

Novel compact and fast magnetic bearings by saturated main coils and linear auxiliary coils for the gas turbine generator of next generation fast reactors

  • Thai, Xuan Van;Choi, Suyong;Rim, Chun Taek
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.31-32
    • /
    • 2012
  • This paper presents a new design of magnetic bearing structure for application in Nuclear Power Plant (NPP). The proposed design includes so-called saturated coils which is used to generate the bias flux for bearing almost the whole mass of the rotor, and so-called linear auxiliary coil controlled to stabilize the suspension. The saturated coil is considered as an special electromagnet which is controlled to operate in the region of magnetic saturation in order to minimize the bias current as well as to enhance the magnetic flux density. This strategy will result in a very compact size of magnetic bearing as well as increasing the speed of the response of the current controller. The novel structure is expected to be applied to design very high power gas turbine generator of next generation of fast reactor in which the mass of rotor can reach 50 tons. The total power of the NPP can reach 2,000 MW. Moreover, the issue of arc occurrence between coils is also discussed and two solutions are proposed.

  • PDF

Nonlinear Control of an Electromagnetic Levitation System Using High-gain Observers for Mmagnetic Bearing Wheels (고이득 관측기를 이용한 자기 베어링 휠용 자기 부상 시스템의 비선형 제어)

  • Choi, Ho-Lim;Shin, Hee-Sub;Koo, Min-Sung;Lim, Jong-Tae;Kim, Yong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.573-580
    • /
    • 2009
  • In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results show that the rotor is accurately levitated at the desired position and well-balanced, which is a suitable result for the potential use an magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID control method.

A study on the permanent levitation system for Maglev train (자기부상열차의 영구자석 부상계에 대한 연구)

  • Moon, Seok-Jun;Yun, Dong-Won;Cho, Hung-Je;Park, Sung-Whan;Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.82-87
    • /
    • 2007
  • A Halbach array is a special arrangement of permanent magnets which augments the magnetic field on one side of the device while cancelling the field to near zero on the other side. The application of this Halbach array magnet to the electrodynamic suspension for Maglev train has been recently studied in order to increase the levitation capability. This paper is focused on analytical method of the magnetic levitation system using Halbach array magnet. The suitability of the proposed method is verified with comparing to a finite element method. From this study, it is confirmed that the proposed method provides a reasonable solution with a little analysis time to the finite element method and the magnetic levitation system using Halbach array magnet is stable dynamically.

  • PDF

Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation (자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어)

  • 이세한;강재관;김용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

Design of an Electromagnet with Low Detent Force and its Control for a Maglev Super-speed Vehicle

  • Lim, Jaewon;Kim, C.H.;Han, J.B.;Han, H.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1667-1673
    • /
    • 2015
  • The vibration and noise caused by the dynamic interaction between electromagnetic suspension and the linear synchronous motor stator beneath a flexible guideway remain problems in designing attractive Maglev trains. One possible method to reduce the sources of vibration is to minimize the detent force in the linear synchronous motor that creates variations in both lift force and thrust. This paper proposes lowering detent force by using separated core instead of single united core. The magnet is designed to adapt to the deflected guideway at a speed of 550km/h. This study will analyze the electromagnetic field and control performance, and how they relate to lift forces and dynamic responses.

Positioning Control of Magnetic Levitation Stage Using Sliding Mode Controller (슬라이딩모드제어기를 적용한 자기부상 스태이지의 위치제어)

  • Jeon, Jeong-Woo;Lee, Joo-Hoon;Hwang, Don-Ha;Kang, Dong-Sik;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2576-2578
    • /
    • 2005
  • In this paper, we address two position control scheme; the lead-lag control and the sliding mode control for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. The sliding mode control algorithm is more effective than the lead-lag control algorithm to reduce effects from movements and disturbances of other axis.

  • PDF