• Title/Summary/Keyword: Magnetic resonance imaging (MR)

Search Result 887, Processing Time 0.03 seconds

Dilatation of Superior Ophthalmic Vein and Visual Disturbance by Central Venous Stenosis: A Case Mimicking Cavernous Sinus Dural Arteriovenous Fistula (상안정맥 확장 및 시력 저하를 보인 중심정맥협착: 해면경막 동정맥루로 오인된 증례 보고)

  • Young Hun Jeon;Kyung Sik Yi;Chi Hoon Choi;Yook Kim;Yeong Tae Park
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1619-1627
    • /
    • 2021
  • Central venous stenosis is a relatively common complication in hemodialysis patients; however, jugular venous reflux (JVR) and increased intracranial pressure are rare, and associated progressive visual disturbance was reported in only a few cases. Here, we report a case of JVR with visual disturbance and increased intracranial pressure. Notably, the MRI was accompanied by a dilatation of the superior ophthalmic vein, which was mistaken for a cavernous sinus dural arteriovenous fistula (CSdAVF). The patient had JVR on time-of-flight MR angiography (TOF-MRA) and severe stenosis of the left brachiocephalic vein on conventional angiography. After balloon angioplasty for central venous stenosis, he was discharged after improvement of his visual disturbance. Although JVR due to central venous stenosis and CSdAVF might show similar symptoms, treatment plans are different. Therefore, it is important to distinguish radiologically based on a thorough review of MRI and TOF-MRA and confirm the central venous stenosis on cerebral angiography for the accurate diagnosis.

The Age-related Microstructural Changes of the Cortical Gray and White Matter Ratios on T2-, FLAIR and T1- weighted MR Images (T2, FLAIR, T1 강조 MR영상에서 나이에 따른 뇌피질의 회질과 백질의 미세구조 변화)

  • Choi, Sun-Seob;Kim, Whi-Young;Lee, Ki-Nam;Ha, Dong-Ho;Kang, Myong-Jin;Lee, Jin-Hwa;Yoon, Seong-Kuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2011
  • Purpose : The purpose of this study was to investigate the microstructural changes according to aging on the thickness and signal intensity (SI) of the cortical gray matter (GM) and white matter (WM) on the T2-, fluid-attenuated inversion recovery (FLAIR) and T1-weighted MR images in normal subjects. Materials and Methods : The 10, 20, 30, 40, 50, 60, 70, 80 and 90 year age groups of men and women (each 10 individuals) who underwent routine brain MRI, including the T2-, FLAIR and T1-weighted images, were selected for this study. We measured the thickness and the SI of the cortical GM and WM at the postcentral gyrus, which has an even thickness at the level of centrum semiovale, on the axial scans and we calculated the mean values of the thickness ratio of the gray/white matter (TRGW) and the signal intensity ratio of the gray/white matter (SRGW), and we compared the ratios of each age group. Results : On the T2-weighted images, the TRGWs were 0.81 and 0.79 at the age of 10 and they were 0.73 and 0.71 at the age of 90 in the men and women, respectively. So, the GM thickness was decreased more than the WM thickness was with aging. On the FLAIR images, the TRGWs were 1.09 and 1.00 at the age of 10 and they were 1.11 and 0.95 at the age of 70 in the men and women, respectively. On the T1-weighted images, the TRGWs were 0.66 and 0.80 at the age of 10, and the ratio was changed to 0.90 and 0.78 at the age of 90 in the men and women, respectively. On the T2-weighted image, the SRGWs were 1.53 and 1.43 at the age of 10, and they were 1.23 and 1.27 at the age of 90 in the men and women, respectively. On the FLAIR images, the SRGWs were 1.23 and 1.25 at the age of 10 and they were 1.06 and 1.05 at the age of 90 in the men and women, respectively. On the T1-weighted images, the SRGWs were 0.86 and 0.85 at the age of 10, and they were 0.90 and 0.87 at the age of 90 in the men and women, respectively. Conclusion : We suggest that the age-related microstructural changes of the thickness and the SI of the cortical GM and WM on the T2-, FLAIR and T1-weighted images are unique, and so this knowledge will be helpful to differentiate neurodegenerative disease from normal aging of the brain.

Comparison of the SNR in the MR images on dental implant material (치아 임플란트 재료에 따른 자기공명영상의 SNR 비교)

  • Kim, Dong-Hyun;Ko, Seong-Jin;Ye, Soo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.149-155
    • /
    • 2015
  • Tooth implant is located in oral cavity and affects neck, skull base, and facail image. These magnetic inhomogeneities are usually frequency encoding direction which cause artifacts due to change of signal strength and geometric distortion. First, to evaluate signal to noise ratio (SNR) of magnetic resonance image caused by tooth implant this study uses meat phantom which is similar to human body and is consisted with fat, muscle, and water to measure signal to noise ratio. Second, signal to noise ratio by using custom-made fixed phantom is measured, and then signal to noise ratio size of different tooth implant types is compared and analyzed. The measured signal to noise ratio values of Brushite, HSA, Metal, and RBM for meat phantom were 2.76, 2.22, 1.88, and 1.57 on T1 SE, 1.88, 1.78, 1.65, and 1.79 on T2 FLAIR, 2.28, 2.25, 2.88, and 2.05 on T2 FSE, and 2.74, 1.94, 1.67, and 1.48 on T2 GRE. The measured signal to noise ratio values of Brushite, HSA, Metal, and RBM for fixed water phantom were 1.2, 1.06, 1.12, and 1.22 on DWI, 1.93, 1.87, 1.93, and 2.06 T1 SE, 1.83, 1.76, 1.82, and 1.92 on T2 FLAIR, 1.85, 1.79, 7.86, and 1.97 on T2 FSE, and 1.97, 1.93, 1.99, and 2.06 on T2 GRE. By considering through the results, patients and dentists need to consider some impacts from testing many aspects although their main purpose of having tooth implants is a dental restoration. Moreover, depending on the tooth implant characteristics of individual patients this study results can be used as baseline data when choosing test protocol.

Preparation of Chitosan-coated Magnetite Nanoparticles (키토산이 피복된 나노 크기의 자성체 분말 제조)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.102-106
    • /
    • 2006
  • Magnetic nanoparticles can be used for a variety of biomedical applications. They can be used in the targeted delivery of therapeutic agents in vivo, in the hyperthermic treatment of cancers. in magnetic resonance (MR) imaging as contrast agents and in the biomagnetic separations of biomolecules. We have synthesized magnetite $(Fe_3O_4)$ nanoparticles using chemical coprecipitation technique with sodium oleate as surfactant. Nanoparticle size can be varied from 2 to 8nm by controlling the sodium oleate concentration. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetic colloid suspensions containing particles with sodium oleate and chitosan have been prepared. Nanoparticles, both oleate-coated and chitosan-coated, have been characterized by several techniques. Atomic farce microscope (AFM) was used to image the coated nanoparticles. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the magnetite nanoparticles. The SQUID measurements revealed superparamagnetism of nanoparticles.

Evaluation of Cerebral Cortices Associated with Sexual Arousal in Healthy Male Using BOLD-based Functional MRI

  • Kim, Hyung-Joong;Seo, Jeong-Jin;Kang, Heoung-Keun;Jeong, Gwang-Woo;Park, Jin-Gyoon;Jeong, Yong-Yeon;Chung, Tae-Woong;Woong Yoon;Park, Kwang-Sung
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.137-137
    • /
    • 2001
  • Purpose: The purpose of this study was to identify cerebral cortices related with sexual arousal fro visual sexual stimulation in healthy males using BOLD-based functional MR imaging Method: Sixteen male volunteers with sexually potent(mean age:24) were examined for thi study. Functional MRI was performed on a 1.5T MR scanner(GE Signa Horizon) with birdcage-type head coil. In this study, blood oxygenation level dependent(BOLD) technique was utilized to create fMR image reflecting local brain activities. The BOLD-based fMRI d were obtained from 7 oblique planes using gradient-echo EPI with $90^{\circ}$flip angle, 50ms TE 6000ms TR, $26cm{\times}26$ cm FOV, $128{\times}128$ matrix, and 10mm slice thickness. The sexual stimulation paradigm consisted of two alternating periods of rest and activati and it began with a 1 minute rest, followed by a 2 minute stimulation by a documentary a erotic video film. Brain activation maps were generated by cross-correlation of imag acquired during rest and activation periods. The index of activation was used to compare t number of pixels activated by each task in each volunteer, where the significance of th differences was evaluated by using Students t-test.

  • PDF

A Study of Whiter Matter Fiber Tractography in Young Internet Addiction Disorder using a Brain Diffusion Tensor Magnetic Resonance Imaging (뇌 확산텐서 자기공명영상을 이용한 청소년 인터넷 중독자의 백질 섬유로에 관한 연구)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • The goal of this study is to investigate corpus callosum and both internal capsule changes with the internet addiction disorder compared to control group using MR diffusion tensor imaging. A total of 22 teenager volunteers who had 10 high-risk group with internet addiction and 12 normal control group were conducted for this study. Imaging was conducted on a 3 T using a EPI sequence. Image evaluation was analysed of the FA, ADC($10^{-3}mm^2/s$), length(mm). We did select ROI for image tracking on corpus callosum of 5 and including 2(internal capsule). The data from these ROIs were compared statistically among the groups using independent t-test, correlation coefficient. There were significant inter-group differences(p<0.05) among FA, ADC($10^{-3}mm^2/s$) and length(mm). And also significantly negative correlations were fond between FA values of corpus callosum and IAD scale(p=0.000). DTI was shown significant changes of FA and ADC, LNF values in IAD compared to control group. Therefore, our results may provided clinical information for brain wite matter functions.

Free-Breathing Motion-Corrected Single-Shot Phase-Sensitive Inversion Recovery Late-Gadolinium-Enhancement Imaging: A Prospective Study of Image Quality in Patients with Hypertrophic Cardiomyopathy

  • Min Jae Cha;Iksung Cho;Joonhwa Hong;Sang-Wook Kim;Seung Yong Shin;Mun Young Paek;Xiaoming Bi;Sung Mok Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1044-1053
    • /
    • 2021
  • Objective: Motion-corrected averaging with a single-shot technique was introduced for faster acquisition of late-gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging while free-breathing. We aimed to evaluate the image quality (IQ) of free-breathing motion-corrected single-shot LGE (moco-ss-LGE) in patients with hypertrophic cardiomyopathy (HCM). Materials and Methods: Between April and December 2019, 30 patients (23 men; median age, 48.5; interquartile range [IQR], 36.5-61.3) with HCM were prospectively enrolled. Breath-held single-shot LGE (bh-ss-LGE) and free-breathing moco-ss-LGE images were acquired in random order on a 3T MR system. Semi-quantitative IQ scores, contrast-to-noise ratios (CNRs), and quantitative size of myocardial scar were assessed on pairs of bh-ss-LGE and moco-ss-LGE. The mean ± standard deviation of the parameters was obtained. The results were compared using the Wilcoxon signed-rank test. Results: The moco-ss-LGE images had better IQ scores than the bh-ss-LGE images (4.55 ± 0.55 vs. 3.68 ± 0.45, p < 0.001). The CNR of the scar to the remote myocardium (34.46 ± 11.85 vs. 26.13 ± 10.04, p < 0.001), scar to left ventricle (LV) cavity (13.09 ± 7.95 vs. 9.84 ± 6.65, p = 0.030), and LV cavity to remote myocardium (33.12 ± 15.53 vs. 22.69 ± 11.27, p < 0.001) were consistently greater for moco-ss-LGE images than for bh-ss-LGE images. Measurements of scar size did not differ significantly between LGE pairs using the following three different quantification methods: 1) full width at half-maximum method; 23.84 ± 12.88% vs. 24.05 ± 12.81% (p = 0.820), 2) 6-standard deviation method, 15.14 ± 10.78% vs. 15.99 ± 10.99% (p = 0.186), and 3) 3-standard deviation method; 36.51 ± 17.60% vs. 37.50 ± 17.90% (p = 0.785). Conclusion: Motion-corrected averaging may allow for superior IQ and CNRs with free-breathing in single-shot LGE imaging, with a herald of free-breathing moco-ss-LGE as the scar imaging technique of choice for clinical practice.

Diagnostic Performance Using a Combination of MRI Findings for Evaluating Cognitive Decline (인지기능 저하평가를 위한 MR 영상 소견 조합의 진단능)

  • Jin Young Byun;Min Kyoung Lee;So Lyung Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.184-196
    • /
    • 2024
  • Purpose We investigated potentially promising imaging findings and their combinations in the evaluation of cognitive decline. Materials and Methods This retrospective study included 138 patients with subjective cognitive impairments, who underwent brain MRI. We classified the same group of patients into Alzheimer's disease (AD) and non-AD groups, based on the neuropsychiatric evaluation. We analyzed imaging findings, including white matter hyperintensity (WMH) and cerebral microbleeds (CMBs), using the Kruskal-Wallis test for group comparison, and receiver operating characteristic (ROC) curve analysis for assessing the diagnostic performance of imaging findings. Results CMBs in the lobar or deep locations demonstrated higher prevalence in the patients with AD compared to those in the non-AD group. The presence of lobar CMBs combined with periventricular WMH (area under the ROC curve [AUC] = 0.702 [95% confidence interval: 0.599-0.806], p < 0.001) showed the highest performance in differentiation of AD from non-AD group. Conclusion Combinations of imaging findings can serve as useful additive diagnostic tools in the assessment of cognitive decline.

Imaging for Multiple Myeloma according to the Recent International Myeloma Working Group Guidelines: Analysis of Image Acquisition Techniques and Response Evaluation in Whole-Body MRI according to MY-RADS (International Myeloma Working Group의 최신 가이드 라인에 따른 다발성 골수종의 영상검사법 및 MY-RADS에 따른 전신 MRI에서의 영상 획득과 반응 평가 소개)

  • A Yeon Son;Hye Won Chung
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.150-169
    • /
    • 2023
  • Multiple myeloma (MM) is a malignant hematologic disease caused by the proliferation of clonal plasma cells in the bone marrow, and its incidence is increasing in Korea. With the development of treatments for MM, the need for early diagnosis and treatment has emerged. In recent years, the International Myeloma Working Group (IMWG) has been constantly revising the laboratory and radiological diagnostic criteria for MM. In addition, as whole-body MRI (WBMR) has been increasing used in the diagnosis and treatment response evaluation of patients with MM, the Myeloma Response Assessment and Diagnosis System (MY-RADS) was created to standardize WBMR image acquisition techniques, image interpretation, and response evaluation methods. Radiologists need to have a detailed knowledge of the features of MM for accurate diagnosis. Thus, in this review article, we describe the imaging method for MM according to the latest IMWG guidelines as well as the image acquisition and response evaluation technique for WBMR according to MY-RADS.

Comparison of Proton T1 and T2 Relaxation Times of Cerebral Metabolites between 1.5T and 3.0T MRI using a Phantom (모형을 이용한 1.5T와 3.0T 자기공명에서의 뇌 대사물질들의 수소 T1과 T2 이완시간의 비교)

  • Kim, Ji-Hoon;Chang, Kee-Hyun;Song, In-Chan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • Purpose : To present the T1 and T2 relaxation times of the major cerebral metabolites at 1.5T and 3.0T and compare those between 1.5T and 3.0T. Materials and Methods : Using the phantom containing N-acetyl aspartate (NAA), Choline (Cho), and Creatine (Cr) at both 1.5T and 3.0T MRI, the T1 relaxation times were calculated from the spectral data obtained with 5000 ms repetition time (TR), 20 ms echo time (TE), and 11 different mixing time (TM)s using STEAM (STimulated Echo-Acquisition Mode) method. The T2 relaxation times were obtained from the spectral data obtained with 3000 ms TR and 5 different TEs using PRESS (Point-RESolved Spectroscopy) method. The T1 and T2 relaxation times obtained at 1.5T were compared with those of 3.0T. Results : The T1 relaxation times of NAA were $2293\;{\pm}\;48\;ms$ at 1.5T and $2559\;{\pm}\;124\;ms$ at 3.0T (11.6% increase at 3.0T). The T1 relaxation times of Cho were $2540\;{\pm}\;57\;ms$ at 1.5T and $2644\;{\pm}\;76\;ms$ at 3.0T (4.1% increase at 3.0T). The T1 relaxation times of Cr were $2543\;{\pm}\;75\;ms$ at 1.5T and $2665\;{\pm}\;94\;ms$ at 3.0T (4.8% increase). The T2 relaxation times of NAA were $526\;{\pm}\;81\;ms$ at 1.5T and $468\;{\pm}\;74\;ms$ at 3.0T (11.0% decrease at 3.0T). The T2 relaxation times of Cho were $220\;{\pm}\;44ms$ at 1.5T and $182\;{\pm}\;35\;ms$ at 3.0T (17.3% decrease at 3.0T). The T2 relaxation times of Cr were $289\;{\pm}\;47\;ms$ at 1.5T and $275\;{\pm}\;57\;ms$ at 3.0T (4.8% decrease at 3.0T). Conclusion : The T1 relaxation times of the major cerebral metabolites (NAA, Cr, Cho), which were measured at the phantom, were 4.1%-11.6% longer at 3.0T than at 1.5T. The T2 relaxation times of them were 4.8%-17.3% shorter at 3.0T than at 1.5T. To optimize MR spectroscopy at 3.0T, TR should be lengthened and TE should be shortened.

  • PDF