Comparison of the SNR in the MR images on dental implant material

치아 임플란트 재료에 따른 자기공명영상의 SNR 비교

  • Received : 2015.09.15
  • Accepted : 2015.11.08
  • Published : 2015.10.30

Abstract

Tooth implant is located in oral cavity and affects neck, skull base, and facail image. These magnetic inhomogeneities are usually frequency encoding direction which cause artifacts due to change of signal strength and geometric distortion. First, to evaluate signal to noise ratio (SNR) of magnetic resonance image caused by tooth implant this study uses meat phantom which is similar to human body and is consisted with fat, muscle, and water to measure signal to noise ratio. Second, signal to noise ratio by using custom-made fixed phantom is measured, and then signal to noise ratio size of different tooth implant types is compared and analyzed. The measured signal to noise ratio values of Brushite, HSA, Metal, and RBM for meat phantom were 2.76, 2.22, 1.88, and 1.57 on T1 SE, 1.88, 1.78, 1.65, and 1.79 on T2 FLAIR, 2.28, 2.25, 2.88, and 2.05 on T2 FSE, and 2.74, 1.94, 1.67, and 1.48 on T2 GRE. The measured signal to noise ratio values of Brushite, HSA, Metal, and RBM for fixed water phantom were 1.2, 1.06, 1.12, and 1.22 on DWI, 1.93, 1.87, 1.93, and 2.06 T1 SE, 1.83, 1.76, 1.82, and 1.92 on T2 FLAIR, 1.85, 1.79, 7.86, and 1.97 on T2 FSE, and 1.97, 1.93, 1.99, and 2.06 on T2 GRE. By considering through the results, patients and dentists need to consider some impacts from testing many aspects although their main purpose of having tooth implants is a dental restoration. Moreover, depending on the tooth implant characteristics of individual patients this study results can be used as baseline data when choosing test protocol.

치아 임플란트는 구강 내에 위치하여 목, 뇌 기저부와 안면부 MR 영상에 영향을 미친다. MR 검사에 사용되어지는 자장의 비균일성은 주로 주파수 부호화 방향으로 신호강도의 변화 및 기하학적인 왜곡으로 인공물을 발생시킨다. 본 연구는 치아 임플란트에 의한 왜곡 정도를 자기공명영상의 신호대 잡음비(singal to noise ratio:SNR)를 평가하여 임플란트 영향 정도를 확인하고자 하였다. 이를 위하여 인체와 유사하게 지방, 근육, 물로 구성된 돼지고기 팬텀을 이용하여 신호대 잡음비를 측정하고, 실험을 위해 제작한 고정형 물 팬텀을 이용하여 신호대 잡음비를 측정하여 치아 임플란트 재료 종류에 따른 신호대 잡음비의 크기를 비교 분석하였다. 돼지고기 팬텀의 Brushite, HSA, Metal, RBM 은 T1 SE에서 2.76, 2.22, 1.88, 1.57 이었고, T2 FLAIR에서 1.88, 1.78, 1.65, 1.79, T2 FSE에서 2.28, 2.25, 2.88, 2.05 T2 GRE에서 2.74, 1.94, 1.67, 1.48의 신호대 잡음비가 측정되었다. 고정형 물 팬텀의 Brushite, HSA, Metal, RBM 은 T1 SE에서 1.93, 1.87, 1.93, 2.06, T2 FLAIR에서 1.83, 1.76, 1.82, 1.92 T2 FSE에서 1.85, 1.79, 7.86, 1.97 T2 GRE는 1.97, 1.93, 1.99, 2.06의 신호대 잡음비가 측정되었다. 이러한 결과를 고려해 볼 때, 치아 임플란트의 재료를 선택할 경우 환자와 치과 의사는 치아의 수복이 주된 목적이지만 여러 분야의 검사에 미치는 영향도 고려해야한다. 또한 환자의 치아 임플란트 재료에 따라 검사 프로토콜을 선택하는데 이 연구 결과가 기초자료로 활용될 수 있다.

Keywords

References

  1. Branemark, Per-Ingvar, Zarb, George, Tissueintegrated prostheses (in English), Berlin, German: Quintessence Books, 1989.
  2. S.C. Bushong, Geoffrey Clarke, Magnetic Resonance Imaging : Physical and Biological Principles(4Th edition), Elsevier, 2013.
  3. Tymofiyeva, Vaegler S, Rottner K, Boldt J, Hopfgartner AJ, Proff PC, Richter EJ, Jakob PM., "Influence of dental materials on dental MRI", Dentomaxillofac Radiol.,Vol.42, No.2, pp.20120271, 2013. https://doi.org/10.1259/dmfr.20120271
  4. Dorota V. Burchardt, Maria Borysewicz-lewicka, "Disturbing effect of different dental materials on the MRI results: preliminary study", Acta of Bioengineering and Biomechanics, Vol.15, No.4, 2013.
  5. Jana Starcukova, Jana Starcukova, Jana Starcukova, Zenon Starcuk Jr., Hana Hubalkova, Igor Linetskiy, "Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts", Vol. 24, Issue 6, pp. 715-723, 2008. https://doi.org/10.1016/j.dental.2007.07.002
  6. C. Fiolhais, F. Nogueira, and M.A.L. Marques (Eds.), A Primer in Density-Functional Theory, Lecture Notes in Physics, Vol. 620 (Springer, Berlin), 2003.
  7. Marta Tanasiewic,"Magnetic resonance imaging in human teeth internal space visualization for requirements of dental prosthetic", J Clin Exp Dent.,Vol. 2, No.1, pp.e6-11, 2010.
  8. Hansson S., "The implant nect: smooth or provided with retention elements. Abiomechanical approach", Clin Oral Implants Res, Vol. 10, No.5, pp. 394-405, 1999. https://doi.org/10.1034/j.1600-0501.1999.100506.x
  9. Abramoff, M. D. and Viergever, M. A. "Computation and visualization of three-dimensional soft tissue motion in the orbit", IEEE Trans. Med.Imaging 21, 296-304, 2002. https://doi.org/10.1109/TMI.2002.1000254
  10. D. J. Schroeder, Astronomical opstics (2nd ed.). Academic Press. p. 433, 1999.
  11. Bushberg, J. T., et al., The Essential Physics of Medical Imaging, (2e). Philadelphia: Lippincott Williams &Wilkins, 2006, p. 280.