• Title/Summary/Keyword: Magnetic powder

Search Result 781, Processing Time 0.023 seconds

Influence of Sintering Temperature on Magnetic Properties of Ni-Zn-Cu Ferrites Used for Mangetic Shielding in NFC (NFC의 자기차폐용 Ni-Zn-Cu 페라이트의 자기특성에 미치는 소결온도의 영향)

  • Ryu, Yo-Han;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.132-135
    • /
    • 2016
  • This study investigates the influence of sintering temperature on the magnetic properties and frequency dispersion of the complex permeability of Ni-Zn-Cu ferrites used for magnetic shielding in near-field communication (NFC) systems. Sintered specimens of $(Ni_{0.7}Zn_{0.3})_{0.96}Cu_{0.04}Fe_2O_4$ are prepared by conventional ceramic processing. The complex permeability is measured by an RF impedance analyzer in the range of 1 MHz to 1.8 GHz. The real and imaginary parts of the complex permeability depend sensitively on the sintering temperature, which is closely related to the microstructure, including grain size and pore distribution. In particular, internal pores within grains produced by rapid grain growth decrease the permeability and increase the magnetic loss at the operating frequency of NFC (13.56 MHz). At the optimized sintering temperature ($1225-1250^{\circ}C$), the highest permeability and lowest magnetic loss can be obtained.

Properties of Soft Magnetic Composite with Evaporated MgO Insulation Coating for Low Iron Loss

  • Uozumi, Gakuji;Watanabe, Muneaki;Nakayama, Rryoji;Igarashi, Kazunori;Morimoto, Koichiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1288-1289
    • /
    • 2006
  • Innovative SMC with low iron loss was made from iron powders with evaporated MgO insulation coating. The coating had greater heat-resistance than conventional phosphatic insulation coating, which enabled stress relieving annealing at higher temperature. Magnetic properties of toroidal samples (OD35mm,ID25mm, t5) were examined. The iron loss at 50Hz for Bm = 1.5T was lower 50% of conventional SMC and was almost the same with silicon iron laminations(t0.35). It became clear that MgO insulation coating has enough heat resistance and adhesiveness to powdersurface to obtain innovative SMC with low iron loss.

  • PDF

Microstructure and Magnetic Properties of $Nd_2Fe_{14}B/{\alpha}-Fe$ Nanocomposite Prepared by HDDR Combined with Mechanical Milling

  • Hu, Lianxi;Wang, Erde;Guo, Bin;Shi, Gang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1286-1287
    • /
    • 2006
  • [ $Nd_2Fe_{14}B/{\alpha}-Fe$ ] nanocomposite powders with a nominal composition of $Nd_{12}Fe_{82}B_6$ were prepared by HDDR combined with mechanical milling. The microstructure was studied by Mossbauer spectrometry and TEM. The magnetic properties were investigated by VSM using bonded magnet samples. The results showed that the annealing temperature had significant influence on both the recombination kinetics and the grain size of the $Nd_2Fe_{14}B$ and ${\alpha}-Fe$ phases, and the bonded magnets presented the best magnetic properties when the nanocomposite powders were prepared by annealing at $760^{\circ}C$ for 30 min.

  • PDF

Bulk Amorphous and/or Nanocrystalline Finemet Alloy Prepared by Super-high-pressure Consolidation

  • Lu, Wei;Yanb, Biao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.788-789
    • /
    • 2006
  • Microstructure and soft magnetic properties of bulk amorphous and/or nanocrystalline $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ alloys prepared by consolidation at 5.5GPa were investigated. The relative density of the bulk sample 1 (from amorphous powders) was 98.5% and the grain sizes were about 10.6nm. While the relative density and grain sizes of bulk sample 2 (from nanocrystalline powders) are 98% and 20.1nm, respectively. Particularly, the bulk samples exhibited a good combined magnetic property: for Sample1, $M_s=125emu/g$ and $H_c=1.5Oe;$ for Sample2, $M_s=129emu/g$ and $H_c=3.3Oe$. The success of synthesizing the nanocrystalline Fe-based bulk alloys will be encouraging for the future development of bulk nanocrystalline soft magnetic alloys.

  • PDF

Magnetic Properties of Activated Quartz Nanocomposite

  • N.N., Mofa;T.A., Ketegenov;Z.A., Mansurov;Soh, Hyun-Jun;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.9-15
    • /
    • 2007
  • The materials showing high structure dispersion with functional properties were developed on the quartz base and those were obtained by mechano-chemical reaction technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 1050nm showing magnetic, electrical properties and others. The similarity of the structure of surface layers of quartz particles subjected to mechano-chemical processing and nano-structure cluspol (clusters in a polymer matrics) material was alsoconfirmed by the fact that the characteristics of ferromagnetic quartz of insulating nano-composite powder were changed with time, after its preparing process was completed.