• Title/Summary/Keyword: Magnetic induction

Search Result 579, Processing Time 0.027 seconds

Development of Internal Defect Detector of Automotive Transmission Parts Using Eddy Current (와전류를 이용한 자동차 변속기 부품의 내부결함 검출기 개발)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.513-518
    • /
    • 2019
  • The non-destructive testing equipment using an eddy current was developed to check for defect in the vehicle transmission component. A defect master sample was made to test all types of defects that occur in the component and also an eddy current detector was manufactured and used to test and detect all kinds of defects. In addition, testing was held against the actual defective items to investigate the cause and type of defects, and a comparative study was conducted based on results from the examination. The software system of the eddy current detector was developed so that even a non-specialist can make assessment of detect in the component from the test results displayed on the monitor.

Development of a Multichannel Eddy Current Testing Instrument(II) (다중채널 와전류탐상검사 장치 개발(II))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoo, Hyun-Joo;Kim, In-Chel
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2011
  • Recently, the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction phenomenon. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In the previous study, the synthesizer module and the analog module which is essential to the ECT system were primarily developed, and in this study the data acquisition and analysis program were developed. The operation system for this program is based on the Windows 7, and optimized for the Korean users, and the specific feature of this program using setup wizard enables inspector to make a setup easily for acquisition and analysis of ECT data. In this paper, the configuration and functions of eddy current data acquisition and analysis program will be introduced.

Frequency Sounding in Small-Loop EM Surveys (소형루프 전자탐사법에서의 주파수 수직탐사)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.119-125
    • /
    • 2003
  • The small-loop electromagnetic (EM) technique has been used successfully for many geophysical investigations, particularly for shallow engineering and environmental surveys. In conventional small loop EM operating at small induction numbers, geometric sounding has been widely used because the depth of penetration of EM energy depends only on the source-receiver separation. Recently developed small loop EM system, however, measures the secondary magnetic field, $H^S$, at multiple frequencies with a fixed source-receiver separation and frequency sounding is tried actively. In this study, we analyzed the behavior of in-phase and quadrature components of ${H^S}_z$, for horizonal coplanar (HCP) configuration over two-layer models. Through this theoretical analysis, it was found that the in-phase component of ${H^S}_z$ is more suitable for frequency sounding than the quadrature component. But, the in-phase component of ${H^S}_z$ is too small to measure, especially in resistive and noisy environment like Korea. Using the fact that the quadrature component is much greater than the in-phase component and the difference of quadrature component of ${H^S}_z$ measured at two frequencies shows the same behavoir as the in-phase component, we suggested an alternative frequency sounding technique. Also, we defined an apparent conductivity, which reflects well the conductivity of subsurface layers.

Development of a Multichannel Eddy Current Testing Instrument(I) (다중채널 와전류탐상검사 장치 개발(I))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoon, Byung-Sik;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.155-161
    • /
    • 2010
  • Recently, the electromagnetic techniques of the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In this study, the synthesizer module and the analog module which are essential to the ECT system were primarily developed. The developed ECT system is basically a multifrequency type which is able to inject the maximum four frequencies based on the frequency and time domain multiplexing method. Conclusively, we confirmed that the EC signal was processed appropriately in each circuit modules, and the Lissajous EC signal was displayed in the impedance plane.

Magnetic Properties of Fe-6.0 wt%Si Alloy Dust Cores Prepared with Phosphate-coated Powders (인산염 피막처리 분말을 사용한 Fe-6.0 wt%Si 합금 압분자심의 자기적 특성)

  • Jang, D.H.;Noh, T.H.;Kim, K.Y.;Choi, G.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.270-275
    • /
    • 2005
  • Dust cores (compressed powder cores) of $Fe-6.0wt\%Si$ alloy with a size of $35\~180\;{\mu}m$ in diameter have been prepared by phosphate coatings and annealings at $600\~900^{\circ}C$ for 1 h in nitrogen atmosphere. Further the magnetic and mechanical properties of the powder cores were investigated. As a general trends, the compressive strength and core loss decreased with the increase in annealing temperature. When annealed at $800^{\circ}C$, the compressive strength was 15 kgf, the permeability and quality factor were 74 and 26, respectively. Moreover the core loss at 50 kHz and 0.1 T induction was $750\;mW/cm^3$, and the percent permeability under the static field of 50 Oe was estimated to be about 78. In addition, the cut-off frequency in the cure representing the frequency dependence of effective permeability was measured to be around 200 kHz. These properties of the $Fe-6.0wt\%Si$ alloy dust cores could be considered to be due to the good insulation effect of iron-phosphate coats, the decrease in magnetocrystalline anisotropy and saturation magnetostriction and the increase in electric resistivity.

Evaluation of Chromosomal Alteration in Electrical Workers Occupationally Exposed to Low Frequency of Electro Magnetic Field (EMFs) in Coimbatore Population, India

  • Balamuralikrishnan, Balasubramanian;Balachandar, Vellingiri;Kumar, Shanmugam Suresh;Stalin, Nattan;Varsha, Prakash;Devi, Subramaniam Mohana;Arun, Meyyazhagan;Manikantan, Pappuswamy;Venkatesan, Chinnakulandhai;Sasikala, Keshavarao;Dharwadkar, Shahnaz N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2961-2966
    • /
    • 2012
  • Extremely low frequency electro magnetic fields (EMFs) have been classified as possibly carcinogenic to humans by the International Agency for Research on Cancer. An increased number of chromosomal alterations in peripheral lymphocytes are correlated with elevated incidence of cancer. The aim of the present study was to assess occupationally induced chromosomal damage in EMF workers exposed to low levels of radiation. We used conventional metaphase chromosome aberration (CA) analysis and the micronucleus (MN) assay as biological indicators of non ionizing radiation exposure. In the present study totally 70 subjects were selected including 50 exposed and 20 controls. Informed written consent was obtained from all participants and the study was performed in accordance with the Declaration of Helsinki and the approval of the local ethical committee. A higher degree of CA and MN was observed in exposed subjects compared to controls, the frequency of CA being significantly enhanced with long years of exposure (P<0.05). Moreover increase in CA and MN with age was noted in both exposed subjects and controls, but was significantly greater in the former. The results of this study demonstrated that a significant induction of cytogenetic damage in peripheral lymphocytes of workers occupationally exposed to EMFs in electric transformer and distribution stations. In conclusion, our findings suggest that EMFs possess genotoxic capability, as measured by CA and MN assays; CA analysis appeared more sensitive than other cytogenetic end-points. It can be concluded that chronic occupational exposure to EMFs may lead to an increased risk of genetic damage among electrical workers.

The Magnetic Properties of Nanocrystalline Fe73.5Cu1Nb3Si15.5B7 Alloy Powder Cores (Fe73.5Cu1Nb3Si15.5B7나노 결정립 합금 분말 코아의 자기적 특성)

  • Noh, T.H.;Choi, H.Y.;Ahn, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • The annealing-temperature dependence of magnetic properties in compressed powder cores being composed of ball-milled F $e_{73.5}$C $u_1$N $b_3$S $i_{15.5}$ $B_{7}$ alloy powders (size 250∼850${\mu}{\textrm}{m}$) and 5 wt% of ceramic insulators has been investigated. When annealed at 5$50^{\circ}C$ for 1 h and so transformed to $\alpha$-Fe phase nanocrystalline structure with the grain size of 11 nm (electrical resistivity : 110 $\mu$$.$cm), the highest effective permeability of 125 and quality factor of 53 were obtained, and the permeability persisted up to about 500 KHz. Further the core loss measured at the frequency of 50 KHz and the induction amplitude of 0.1 T was very low (230 mW/㎤). However the dc bias characteristics was not satisfactory as compared to that of conventional powder core materials(MPP, Sendust etc.). The inferior dc bias property of F $e_{73.5}$C $u_1$N $b_3$S $i_{15.5}$ $B_{7}$ alloy powder cores was attributed to the fact that the size of powder was too large for obtaining the same permeability with that of conventional materials.

An improvement of MT transfer function estimates using by pre-screening scheme based on the statistical distribution of electromagnetic fields (통계적 사전 처리방법을 통한 MT 전달함수 추정의 향상 기법 연구)

  • Yang Junmo;Kwon Byung-Doo;Lee Duk-Kee;Song Youn-Ho;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.273-280
    • /
    • 2005
  • Robust magneto-telluric (MT) response function estimators are now in standard use in electromagnetic induction research. Properly devised and applied, these methods can reduce the influence of unusual data (outlier) in the response (electric field) variable, but often not sensitive to exceptional predictor (magnetic field) data, which are termed leverage points. A bounded influence estimator is described which simultaneously limits the influence of both outlier and leverage point, and has proven to consistently yield more reliable MT response function estimates than conventional robust approach. The bounded influence estimator combines a standard robust M-estimator with leverage weighting based on the statistics of the hat matrix diagonal, which is a standard statistical measure of unusual predictors. Further extensions to MT data analysis are proposed, including a establishment of data rejection criterion which minimize the influence of both electric and magnetic outlier in frequency domain based on statistical distribution of electromagnetic field. The rejection scheme made in this study seems to have an effective performance on eliminating extreme data, which is even not removed by BI estimator, in frequency domain. The effectiveness and advantage of these developments are illustrated using real MT data.

  • PDF

Dual Component Analysis for In Vivo T2* Decay of Hyperpolarized 13C Metabolites

  • Joe, Eunhae;Lee, Joonsung;Lee, Hansol;Yang, Seungwook;Choi, Young-Suk;Wang, Eunkyung;Song, Ho-Taek;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Purpose: To investigate the exchange and redistribution of hyperpolarized $^{13}C$ metabolites between different pools by temporally analyzing the relative fraction of dual $T_2{^*}$ components of hyperpolarized $^{13}C$ metabolites. Materials and Methods: A dual exponential decay analysis of $T_2{^*}$ is performed for [1-$^{13}C$] pyruvate and [1-$^{13}C$] lactate using nonspatially resolved dynamic $^{13}C$ MR spectroscopy from mice brains with tumors (n = 3) and without (n = 4) tumors. The values of shorter and longer $T_2{^*}$ components are explored when fitted from averaged spectrum and temporal variations of their fractions. Results: The $T_2{^*}$ values were not significantly different between the tumor and control groups, but the fraction of longer $T_2{^*}$ [1-$^{13}C$] lactate components was more than 10% in the tumor group over that of the controls (P < 0.1). The fraction of shorter $T_2{^*}$ components of [1-$^{13}C$] pyruvate showed an increasing tendency while that of the [1-$^{13}C$] lactate was decreasing over time. The slopes of the changing fraction were steeper for the tumor group than the controls, especially for lactate (P < 0.01). In both pyruvate and lactate, the fraction of the shorter $T_2{^*}$ component was always greater than the longer $T_2{^*}$ component over time. Conclusion: The exchange and redistribution of pyruvate and lactate between different pools was investigated by dual component analysis of the free induction decay signal from hyperpolarized $^{13}C$ experiments. Tumor and control groups showed differences in their fractions rather than the values of longer and shorter $T_2{^*}$ components. Fraction changing dynamics may provide an aspect for extravasation and membrane transport of pyruvate and lactate, and will be useful to determine the appropriate time window for acquisition of hyperpolarized $^{13}C$ images.

Static Effect in Magnetotelluric Responses: An Implication from the EM Integral Equation (MT 탐사 반응에서 정적효과: 적분방정식을 통한 고찰)

  • Yoonho Song
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.181-195
    • /
    • 2024
  • This tutorial explains that the static effect in the magnetotelluric (MT) survey is a physical phenomenon caused by charges accumulated on the boundaries of subsurface inhomogeneities. To facilitate understanding of the physical phenomenon, differences between static induction and charge accumulation on the boundary are explained and analyzed with help of schematic illustrations. Subsequently, from the electromagnetic (EM) integral equation formulation, it is clearly shown that the secondary electric field due to charges accumulated on the interface in the presence of the primary field appears as the static effect. Therefore, except in the cases of the layered earth or a two-dimensional earth with transverse magnetic (TM) mode excitation, the static effect always exists in MT responses and further, it is not 'static' but rather frequency dependent. Despite the fact that the static effect is a secondary electric field due to inhomogeneity, inevitable under-sampling in the frequency and spatial domains prevent the effect from being handled properly in numerical inversion. Therefore, considering the practical aspects of the MT survey, which cannot be a continuous measurement covering the entire survey area over a wide frequency band, a three-dimensional (3-D) inversion incorporating the static shift as a constraint with the Gaussian distribution is introduced. To enhance understanding of the integral equation EM modeling, the formulation of the 3-D integral equation and mathematical analyses of the Green tensor and scattering current are described in detail in the Appendix.