• 제목/요약/키워드: Magnetic force model

검색결과 278건 처리시간 0.037초

자기장에 의한 조화가진을 받는 구조물의 위상 최적화 (Topology Optimization of a Structure under Harmonic Excitation caused by Magnetic Fields)

  • 유정훈
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1613-1620
    • /
    • 2001
  • This study is focused on the application of the homogenization design method (HDM) to reduce the vibration level of a structure excited by magnetic harmonic farces. This is accomplished by obtaining the optimal material distribution in a design domain to minimize the frequency response caused by the magnetic harmonic excitation. The Maxwell stress method is used to compute the magnetic force and the HDM is applied leer the optimization. The developed method is applied to a simple pole model that is excited by the harmonic bending farce caused by the current around an adjacent stator. Results shows that the HDM is valid to minimize the frequency response.

BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석 (Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors)

  • 김태종;황상문;박노길
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권11호
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF

자기전해복합경면가공의 개발에 관한 연구(제 1보) -전해공정에 미치는 자기장의 영향- (Development of The Magnetic -Electrolytic-Abrasive Polishing (MEAP) (1st) -Effect of magnetic field on electrolytic finishing process-)

  • 김정두
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.25-30
    • /
    • 1995
  • A new finishing process, magnetic-electrolytic-abrasive polishing(MEAP), combining Lorentz' force effect in the traditional electrolytic finishing process was developed to realize the high efficiency as well as high surface quality of finishing . The paper describes the theoretical basis about the modification of electrolytic ions motion by the magnetic field. The effect of magnetic field on the electrolytic process was discussed was and analyzed from the result of model test.

  • PDF

자기부상열차의 동적 해석 연구 (Study on Dynamic Analysis of Magnetic Levitation Vehicles)

  • 한형석;조흥제;김대진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.218-225
    • /
    • 1999
  • Dynamic analysis of the magnetic levitation vehicle UTM01 is studied using the multibody dynamic analysis program DADS. The magnetic levitation force is defined and incorporated into DADS through the user-defined subroutines of DADS. The vehicle with bogies is modeled in 3 dimension. The developed vehicle model with magnetic nodules is analyzed for two rail profiles. The results show that the presented method is applicable to magnetic levitation vehicles.

  • PDF

Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction

  • Song, Myung-Kwan;Fujino, Yozo
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.355-380
    • /
    • 2008
  • In this study, the new three-dimensional finite element analysis model of guideway structures considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom). The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force, which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring model. By Lagrange's equations of motion, the equations of motion of Maglev train are formulated. Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge interaction, the complete system matrices of Maglev train-guideway structure system are composed.

1D 시뮬레이션 기반 GDI 인젝터의 비선형적 분사 특성 해석에 대한 연구 (Investigation on the Non-linear Injection Characteristics of GDI injector using 1D Simulation)

  • 이진우;문석수;허동한;강진석
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.169-175
    • /
    • 2023
  • Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.

Slotless 영구자석형 선형 동기전동기의 고추력화를 위한 형상 설계 (Shape Design of Slotless Type PMLSM for Improving Thrust Density)

  • 김용철;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권7호
    • /
    • pp.320-326
    • /
    • 2003
  • Slotless Permanent Magnet Linear Synchronous Motor (PMLSM) has good control ability but thrust density is low. So, this paper proposes inserted core type of slotless PMLSM to improve its thrust density. Inserting the core between windings of each phase, detent force is generated by the difference of magnetic resistance in an air gap. To minimize detent force, this paper applies the neural network to inserted core type of slotless PMLSM. The, Magnetic pole ratio, the width of the inserted core and the width of the coil are selected as a design parameter to minimize detent force. In comparison with inserted core type one, thrust ripple greatly decreases by minimizing detent force and also thrust increases in this optimal model.

자기벡터포텐셜을 이용한 3차원 전자력 계산 (Electromagnetic Force Calculation using Magnetic Vector Potentials in 3-D Problems)

  • 양재진;이복용;이병환;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.153-155
    • /
    • 1994
  • Electric machines such as motors which have moving parts are desgined for producing mechanical force or torque. The accurate calculation of electromagnetic force and torque is important in the design these machines, Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. In the problems including current source, magnetic vector potentials(MVP) have mostly been used as an unknown variables for field analysis by numerical method; e, g. FEM. This paper, thus, introduces both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetrical FEM. In each case, the calculated force are tabulated for several mesh schemes.

  • PDF

승용차용 MR 댐퍼의 댐핑력 이력현상 모델 (Hysteresis Model of Damping Forces of MR Damper for a Passenger Car)

  • 이순규;최승복
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.189-197
    • /
    • 2001
  • This paper presents hysteresis models of damping forces of a magneto-rheological (MR) damper which is applicable to a middle-sized passenger vehicle. After manufacturing a cylindrical type of the MR damper, its field-dependant damping force and hysteresis behavior are experimentally evaluated. Three different models ; Bingham model, Bouc-Wen model and Polynomial model are provided to predict the hysteretic damping force. The damping force characteristics predicted from three different models are compared with the measured results under various excitation conditions.

  • PDF

Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

  • Jee, Jun-Goo
    • 한국자기공명학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2022
  • There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer-even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.