• Title/Summary/Keyword: Magnetic fluid

Search Result 783, Processing Time 0.042 seconds

A Study of the Micor Mechanical System by Using the Magnetic Fluid (자성유체를 개입한 Micro Mechanical System에 관한 연구)

  • Kim, Dong-Wook;Kim, Nam-Gyun;Kim, Bu-Gil;Yuhta, Toshio
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.147-153
    • /
    • 1993
  • In this paper, we studied about the micro pressure transmission system using fluid. For the investigation of feasibility of microhydraulic system, the hydraulic characteristics were examined by using the capillary tube system and the micro cylinder system that consists of a rod and a micro capillary tube. A new hydraulic micro actuator using magnetic fluid and an external magnetic field was also investigated. The results showed that our microhydraulic system has the possibility of power transmission in arbitrary directions.

  • PDF

Design and behavior of two profiles for structural performance of composite structure: A fluid interaction

  • Thobiani, Faisal Al;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ghandourah, Emad;Alhawsawi, Abdulsalam;Alshoaibi, Adil
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.221-228
    • /
    • 2022
  • Two-dimensional stagnation point slip flow of a Casson fluid impinging normally on a flat linearly shrinking surface is considered. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations.The flow is assumed to be steady and incompressible, with external magnetic field acting on it. Similarity transformation is utilized to investigate the behavior of many parameters for heat and velocity distributions using truncation approach.The influence of buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. The effect of the magnetic parameter on the streamwise velocity profile is also investigated.

A Study for measuring the Intial Permeability of Soft-Ferrite Powder by Using Differential Transformer Coil (차동트랜스 코일을 이용한 Soft-Ferrite 분말의 초투자율측정에 관한 연구)

  • Jun, Hong-Bae;Heo, Jin;Kim, Chul-Han;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.68-71
    • /
    • 2000
  • In this study, A set-up for measuring a initial permeability of soft-ferrite powder was developed with a differential transformer coil. To measure a initial permeability of magnetic powder is cumbersome since there are not any measuring equipment and method. A magnetic powder is currently used for a magnetic fluid and microwave absorber materials, and the initial permeability of the magnetic powders is very important to be evaluated a powder for some applications.

  • PDF

Magnetic Microactuator Array for High Speed Fluid Injection System (고속 유체분사 시스템을 위한 마크네틱 마이크로 액츄에이터 어래이)

  • Shin, Kyu-Ho;Moon, Chang-Yul;Shin, Su-Ho;Kim, Yong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1994-1996
    • /
    • 2002
  • This paper reports a novel high-speed fluid injection system employing a simple magnetic micoractuator. This magnetic microacutator consists of current carrying copper beams and permanent magnet under the beams. There were many efforts to magnetic microactuator realization using conducting coils [1-2]. Even though many of magnetic microactuators were successfully fabricated and tested, it is true that most them suffer complex fabrication processes and thus higher production costs than electrostatic counterparts. In this research, efforts were concentrated on the microactuator realization that has simple structure, low production cost, and mass production possibility.

  • PDF

Design for Improving Magnetic Force of Control Valve in Variable Compressor (가변압축기용 제어 밸브의 전자력 향상 설계)

  • Lee, Y.J.;Lee, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2010
  • This paper represents solenoid design of control valve for incline angle control in variable compressor. Some theoretical and numerical analysis were performed to analyse solenoid and compared with experimental results. Maxwell program was used for numerical analysis. Through redesigns of housing body, plunger, core, and disk in control valve, the needed force was gotten. Reduction of core groove and housing body air-gap had a large influence on magnetic force. But increasing of disk thickness had little effect on magnetic force. Control valve efficiency could be improved through solenoid redesign.

  • PDF

Study on the Compact MR fluid Brake for the Training and Sporting Equipment for Leg Rehabilitation (하지 재활운동치료 기구에 적용하기 위한 소형 MR 유체 브레이크에 관한 연구)

  • Park, Woo-Cheul;Lee, Hyun-Chang;Kim, Il-Gyoum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2878-2885
    • /
    • 2012
  • In this study, the training and sporting equipment for leg rehabilitation featuring the MR fluids is proposed. The compact MR fluid brake is designed and manufactured to apply to the rehabilitation training and sporting mechanism. The resistance characteristic of the MR fluid brake is controllable by varying the magnetic field around the fluid. Under consideration of spatial limitation, design parameters which are related with the magnetic strength are determined to maximize to a torque using finite element method. The FE analysis is performed using a commercial code, ANSYS Workbench. The proposed brake device is manufactured, and its field-dependant torque is experimentally evaluated. When the electric current is supplied, the torque of the MR fluid brake is increased and the response is very fast. Depending on the strength of the current supply, torques of the MR fluid brake also increase similar to Bingham property of MR fluid.

Development of an Injection Nozzle and an Electromagnet Module for a MR Fluid Jet Polishing System (MR Fluid Jet Polishing 시스템을 위한 분사노즐 및 전자석 모듈 개발)

  • Lee, Jung-Won;Cho, Yong-Kyu;Ha, Seok-Jae;Shin, Bong-Cheol;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.767-772
    • /
    • 2012
  • Generally, abrasive fluid jet polishing system has been used for polishing of complex shape or freeform surface which has steep local slopes. In the system, abrasive fluid jet is injected through a nozzle at high pressure; however, it is inevitable to lose its coherence as the jet exits a nozzle. This problem causes incorrect polishing results because of unstable and unpredictable workpiece material removal at the impact zone. In order to solve this problem, MR fluid jet polishing method has been developed using a mixture of abrasive and MR fluid which can maintain highly collimated and coherent jet by applied magnetic field. Thus, in this study, an injection nozzle and an electromagnetic module, most important parts in the MR polishing system, were designed and verified by magnetic field and flow analysis. As the results of experiments, it can be confirmed that stable fluid jets for polishing were generated since smooth W-shapes and uniform spot size were observed regardless of standoff distance changes.

Leakage-free Rotating Seal Systems with Magnetic Nanofluids and Magnetic Composite Fluids Designed for Various Applications

  • Borbath, Tunde;Bica, Doina;Potencz, Iosif;Borbath, Istvan;Boros, Tibor;Vekas, Ladislau
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. Design concepts and some constructive details of the magnetofluidic seals are discussed in order to obtain high sealing capacity. Different types of magnetofluidic sealing systems and applications are reviewed. Testing procedures and equipment are presented, as well as the sealing capabilities of different types of magnetizable fluids.

Development of a Magnetic Seal and the Leak Test (마그네틱씰 개발 및 기밀 평가 시험)

  • Kim, Ock-Hyun;Lee, Min-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.79-83
    • /
    • 2011
  • Magnetic seal uses a magnetic fluid to seal a gap between a rotating shaft and housing. It is distinguished from other kinds of seals from the fact that solid contact does not occur in the seal. This implies that it is free from solid rubbing thus dustless and provides a clean circumstance. That is the reason why the magnetic seal is used exclusively for most of vacuum chambers in semiconductor process where dustless clean circumstance is critical. A magnetic seal has been developed of which design parameters are determined based on published data, and an air pressure test has been done to examine its sealing capability. Effects of some design parameters have been studied through FEM analysis. The results show some notable aspects of design parameters and provide suggestions for developing the seals. Regarding the sealing capacity of the magnetic seal the factor to match the theoretical value with the actual one was found to be 0.4~0.7, which means still there is some discrepancy between theory and actual.

Magnetic Particle Separation by an Optimized Coil: A Graphical User Interface

  • Rouhi, Kasra;Hajiaghajani, Amirhossein;Abdolali, Ali
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.214-219
    • /
    • 2017
  • Magnetic separators that clean the fluid stream from impurities, protect the installations in numerous industries. This paper introduces a graphical user interface (GUI) which proposes an optimized coil separating magnetic particles with a radius from 1 up to 500 µm. High gradient magnetic fields are employed in an arbitrary user defined fluidic channel which is made of a nonmetallic material. The effects of coil parameters are studied and adjusted to design an optimum coil with a minimum Ohmic loss. In addition, to design the coil scheme based on the particle movements, a mathematical particle-tracing model within the fluid channels has been utilized. In comparison to conventional magnetic separators, this model is reconfigurable by the user, produces a weaker magnetic field, allows for continuous purifying and is easy to install, with high separation efficiency. The presented GUI is simple to use, where the coil's manufacturing limitations can be specified.