• 제목/요약/키워드: Magnetic effects

검색결과 1,775건 처리시간 0.05초

가스분무법으로 제조한 MPP 분말코어의 자기적 특성에 미치는 열처리 효과 (The Effects of Heat-treatment on Magnetic Properties for Gas-atomized MPP Dust Cores)

  • 노태환;김구현;김광윤;정인범;최광보
    • 한국자기학회지
    • /
    • 제11권4호
    • /
    • pp.173-178
    • /
    • 2001
  • 가스분무법으로 만든 MPP 압분자심을 무자장 및 자장중에서 열처리한 후 냉각속도를 달리할 때 얻어지는 자기적 특성의 변화를 조사하였다. 무자장중에서 열처리시 냉각속도가 증가하면 교류투자율 및 자심손실이 감소하였으며, 이는 각각 빠른 냉각속도에서의 불균일한 내부음력의 발생과 이상 와전류손실의 감소에 기인하는 것으로 해석되었다. 한편 MPP 압분체를 무자장 열처리 후 냉각속도를 달리하여도 Ni-Fe 합금에서 전형적으로 나타나는 규칙상의 형성에 따른 자기적 특성의 변화는 보이지 않았으나, 느린 냉각속도의 조건하에서 자장열처리를 하면 용이하게 구성원자의 방향성 규칙화에 의해 유도자기이방성이 생성되며 상당한 투자율 및 자심손실의 변화가 얻어지는 것으로 관찰되었다.

  • PDF

Effects of the Magnetic Part of The Breit Term on Bonding: Model Calculations with Small Diatomic Molecules

  • 류설;;한영규;이윤섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권9호
    • /
    • pp.969-974
    • /
    • 2001
  • Model calculations for small molecules Li2, F2, LiF and BF have been performed at the Dirac-Fock level of theory using Dirac-Coulomb and Dirac-Coulomb-Magnetic Hamiltonians with various basis sets. In order to understand what may happen when the relativity becomes significant, the value of c, speed of light, is varied from the true value of 137.036 a.u. to 105 (nonrelativistic case) and also to 50 and 20 a.u. (exaggerated relativistic cases). Qualitative trends are discussed with special emphasis on the effect of the magnetic part of the Breit interaction term. The known relativistic effects on bonding such as the bond length contraction or expansion are demonstrated in this model study. Total energy, $\pi-orbital$ splitting, bond length, bond dissociation energy and dipole moment are calculated, and shown to be modified in a uniform direction by the effect of the magnetic term. Inclusion of the magnetic term raises the total energy, increases the bond length, reduces the $\pi-orbital$ splitting, increases the bond dissociation energy, and mitigates the changes in dipole moment caused by the Dirac term.

Analysis of CHAMP Magnetic Anomalies for Polar Geodynamic Variations

  • Kim Hyung Rae;von Frese Ralph R.B.;Park Chan-Hong;Kim Jeong Woo
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.91-98
    • /
    • 2005
  • On board satellite magnetometer measures all possible magnetic components, such as the core and crustal components from the inner Earth, and magnetospheric, ionospheric and' its coupled components from the outer Earth. Due to its dipole and non-dipole features, separation of the respective component from the measurements is most difficult unless the comprehensive knowledge of each field characteristics and the consequent modeling methods are solidly constructed. Especially, regional long wavelength magnetic signals of the crust are strongly masked by the main field and dynamic external field and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar region relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects that are closely related to the geomagnetic storms affecting ionospheric current disturbances. To help isolate regional lithospheric anomalies from core field components, the correlations between CHAMP magnetic anomalies and the pseudo-magnetic effects inferred from satellite gravity-derived crustal thickness variations can also be exploited, Isolation of long wavelengths resulted from the respective source is the key to understand and improve the models of the external magnetic components as well as of the lower crustal structures. We expect to model the external field variations that might also be affected by a sudden upheaval like tsunami by using our algorithm after isolating any internal field components.

Effects of strain on the optical and magnetic properties of Ce-doped ZnO

  • Xu, Zhenchao;Hou, Qingyu;Guo, Feng;Jia, Xiaofang;Li, Cong;Li, Wenling
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1465-1472
    • /
    • 2018
  • The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

회전자 편심을 고려한 농형 유도전동기의 특성해석 (Characteristics Analysis on the Effects of Rotor Eccentricity in Squirrel-cage Induction Motor)

  • 김미정;김병국;조원영;조윤현;황돈하;강동식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.188-190
    • /
    • 2006
  • This paper describes the effects of air gap eccentricity in induction machines. Asymmetric electro-magnetic force caused by the frictional worn bearing, rotor misalignment and unbalanced rotor etc. generates an asymmetrical operation, vibration and electro-magnetic noise. The need for detection of these rotor eccentricities has pushed the development of monitoring methods with increasing sensitivity and noise immunity. In this paper, we focus on investigating the asymmetrical operation considering of unbalanced magnetic force in squirrel-cage induction motor with 380 [V], 7.5 [kW], 4P, 1,768 [rpm]. The effects of the rotor eccentricity, magnetic force are investigated by finite element method (FEM).

  • PDF

Detent Force Analysis in Permanent Magnet Linear Synchronous Motor Considering Longitudinal End Effects

  • Li, Liyi;Ma, Mingna;Chan, C.C.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.9-15
    • /
    • 2013
  • This paper presents a uniform analytical model by energy method and Fourier series expansion to analyze detent force in uneven magnetic field for permanent magnet linear synchronous motor (PMLSM). The model reveals that detent force in long-primary type is mainly influenced by non-ideal distribution of permanent magnet magnetic motive force, while nounified air-gap permeance makes a great impact on detent force of short-primary type. Hence, magnetic field similarity of motor design techniques referring rotary counterpart are adopted. For long-primary type novel method of splitting edge magnets is proposed to reduce end effects force, and optimal widths of edge tooth in short-primary type also verify the effectiveness of magnetic field similarity. The experimental results validate finite element analysis results.

초크랄스키 단결정 장치내 실리콘 용융액 운동의 자기장효과 (Magnetic field effects of silicon melt motion in Czochralski crystal puller)

  • 이재희
    • 한국결정성장학회지
    • /
    • 제15권4호
    • /
    • pp.129-134
    • /
    • 2005
  • 초크랄스키 단결정장치내 실리콘 유동의 자기장효과에 대한 수치해석을 하였다. 8" 단결정 성장과정에서 난류 모형을 사용하여 수송현상을 계산하였다. 도가니 회전수가 작으면 자연대류가 지배적이었다. 도가니 회전수가 증가할수록 강제대류가 증가되며 온도 분포는 더 넓어진다. cusp 자기장을 인가하면 도가니근처의 유동이 크게 감소하며 온도분포는 전도의 경우와 비슷해진다.

Effects of Static Magnetic Fields on Phagocytic Activity of Murine Peritoneal Macrophages

  • Eun, Jae-Soon;Ko, Dae-Woong;Jeon, Yong-Keun;Lee, Kyung-A;Park, Hoon;Ma, Tian-Ze;Kim, Min-Gul;Kwak, Yong-Geun
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.152-159
    • /
    • 2006
  • Electro-magnetic fields and static magnetic fields generated from diverse home/environmental sources have been reported that these could make harmful effects on the human health such as suppression of immunity and tumorigenesis. However, the mechanisms for the biologic effects of electro-magnetic fields or static magnetic fields are still remained unclear. In this study, we examined the in vitro effects of static magnetic fields (SMF) on murine peritoneal macrophages. The cells were exposed in vitro to SMF of $150{\sim}250$ or $350{\sim}450$ G in 5% $CO_2$-incubator. The phagocytic activity of murine peritoneal macrophages was inhibited under exposure to SMF. In order to provide a more complete picture of molecular mechanism for the biological effect of SMF, we compared the levels of total proteins from macrophages with or without exposure to SMF using quantitative proteomic analysis. Proteins which were differentially expressed in macrophages exposed to SMF compared with non-exposed macrophages, were identified. Among them, the levels of trypsinogen 16, lactose-binding lectin Mac-2, galactoside-binding lectin, actin-like (Put. ${\beta}-actin$, vimentin) and electron transferring flavoprotein beta polypeptide were enhanced under exposure to SMF. These results suggest that SMF can affect the phagocytic activity of macrophages via diverse mechanisms.

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

누설자속탐상법의 결함검출능력 향상에 관한 연구 (Improvement in Probability of Detection for Leakage Magnetic Flux Methods)

  • 이진이
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.13-18
    • /
    • 2004
  • It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. Leakage magnetic flux near the crack on the specimen could be amplified by 3-dimensional magnetic fluid and zoom in and out of measurement area. This study introduces the experimental consideration of the effects of lens for concentrating of magnetic flux. The experimental results showed that the magnetic fluid has sufficient lens effect for magnetic camera and effect of improvement in probability of detection.

  • PDF