• Title/Summary/Keyword: Magnetic Separation

Search Result 411, Processing Time 0.028 seconds

Magnetic Separation of FCC Equilibrium Catalyst by HGMS

  • Xiang, Fazhu;He, Pingbo;Chen, Jin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.770-775
    • /
    • 2001
  • Effects of magnetic field and carrier gas velocity on the magnetic separation of FCC catalyst by a high gradient magnetic separator were studied. The activities of the equilibrium catalyst, the magnetic particles and the nonmagnetic particles were evaluated in a fixed bed microreactor The results showed that heavy metal contaminated catalyst can be selectively separated by means of high gradient magnetic separation at magnetic field 0.5T and carrier gas velocity 0.3m.s$^{-1}$ , and lightly metal contaminated catalyst retained high catalytic activity.

  • PDF

A Study on the Magnetic Separation of low grade Iron ore fof Yangyang Mine (양양산저품위철광석(襄陽産低品位鐵鑛石)의 자선(磁選)에 관(關)한 연구(硏究))

  • Park, Yoon Woo
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.165-168
    • /
    • 1975
  • The grade and recovery rate and its sulphur content of iron concentrate compared respectively as varied with redcued size using the Crocket Magnetic Separator and the Wet-Drum-Magnetic Separator in the magnetic separation test of iron ore from Yangyang mine. The content of sulphur was decreased distinctly as the size was finer. In case of the sample of -100 mesh, using the Crocket Magnetic Separator, the sulphur content of iron ore was decreased to 0.10% and its grade increased to 67.0%, but the recovery rate was no more than 85.1%. In the Wet-Drum type, the grade and the recovery rate of concentrate was better than those in the Crocket Magnetic Separation, but the content of sulphur was more than that in the Crocket Magnetic Separation. The Crocket type is suitable for less sulphur content while the Wet-Drum Magnetic Separator is suitable for better the grade recovery rate of the magnetic concentrate.

  • PDF

Research and development of new magnetic filter for high gradient magnetic separation

  • Shigehiro Nishijima;Naoki Nomura;Fumihito Mishima
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.1-6
    • /
    • 2023
  • We have been developing a new magnetic filter so that small sized paramagnetic substances can be separated even in a low magnetic field (lower than 2T). The developed filter is a packed ferromagnetic filament with a triangular cross section. The filament has a diameter of 120 ㎛ and a length of 3 mm, and is mechanically packed with a volume ratio of 17.6%. Using this filter, a magnetic separation experiment of hematite was carried out using a superconducting magnet at the field of 2T. Similarly, magnetic separation was performed using a conventional magnetic filter. It became clear that the separation efficiency of newly developed filter is high as that of conventional mesh filter. The smaller sized hematite (<3 ㎛) could be separated though conventional mesh filter could not separate.

COAL DESULFURIZATION BY MAGNETIC SEPARATION METHODS (자력선별법에 의한 선탄의 탈황)

  • Jeon, Ho-Seok;Lee, Jae-Jang
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.175-185
    • /
    • 1995
  • Under the new environmental regulations announced by the government, utilities will have to cut their sulfur dioxide emissions by 60% from 1991 levels by the year of 1999. Sulfur dioxide emissions can be reduced prior to combustion by physical, chemical or biological coal cleaning. The new technology of high gradient magnetic separation (HGMS) offers the potential of economic separatoins of a variety of fine, weakly magnetic minerals including inorganic sulfur and many ash-forming minerals from coals. In the present paper, magnetic separation tests have been conducted on Korean anthracite and high-sulfur Chinese coal to investigate the feasibility of these techniques for reducing sulfur content from coals. In wet magnetic separation, the studied operating parameters include particle size, pH, matrix types, feed solids content, feed rate, number of cleaning stages and etc. The results shows that for wet separation, 60~70% of total sulfur was removed from coals with over 80% combustible recovery, on the other hand, for dry separation, 47.6% of total sulfur was removed from coals with 75% recovery.

  • PDF

THE MAGNETIC SEPARATION OF Nd-Fe-B POWDERS

  • Cui, Li-Ya;Zheng, Da-Li;Zhu, Jing-Han;Zhao, Wei-Hong;Ding, Shu-Lin
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.672-678
    • /
    • 1995
  • The magnetic separation of Nd-Fe-B powders prepared by melt-spun and HDDR processes was investigated. The experiments show that the ununiform melt-spun powders can be separated into various standards by means of magnetic separation method. The magnetic powders with higher properties were obtained by the use of suitable separating field. For example, the properties of ununiform melt-spun powders are Br=7.95 kG, iHc=9.93 kOe and (BH)max=10.2 MGOe before separating. Through separating in different magnetic fields, the powders obtained with a separating field of 780 Oe has the optimum properties of Br=7.7 kG, iHc=11.0 kOe and (BH)max=15.3 MGOe. The magnetic properties of the HDDR magnetic powder are hardly separated by the magnetic separation method.

  • PDF

Superconducting magnetic separation of ground steel slag powder for recovery of resources

  • Kwon, H.W.;Kim, J.J.;Ha, D.W.;Choi, J.H.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.22-25
    • /
    • 2017
  • Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

Basic study on high gradient magnetic separation of nano beads using superconducting magnet for antibody purification

  • Jeongtae Kim;Insung Park;Gwantae Kim;Myunghwan Sohn;Sanghoon Lee;Arim Byun;Jin-sil Choi;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.60-64
    • /
    • 2023
  • The manufacturing process of antibody drugs comprises two main stages: the upstream process for antibody cultivation and the downstream process for antibody extraction. The domestic bio industry has excellent technology for the upstream process. However, it relies on the technology of foreign countries to execute downstream process such as affinity chromatography. Furthermore, there are no domestic companies capable of producing the equipment for affinity chromatography. High gradient magnetic separation technology using a high temperature superconducting magnet as a novel antibody separation and purification technology is introduced to substitute for the traditional technology of affinity chromatography. A specially designed magnetic filter was equipped in the bore of the superconducting magnet enabling the continuous magnetic separation of nano-sized paramagnetic beads that can be used as affinity magnetic nano beads for antibodies. To optimize the magnetic filter that captures superparamagnetic nanoparticles effectively, various shapes and materials were examined for the magnetic filter. The result of magnetic separation experiments show that the maximum separation and recovery ratio of superparamagnetic nanoparticles are 99.2 %, and 99.07 %, respectively under magnetic field (3 T) and flow rate (600 litter/hr).

Investigation on the component separation of magnetic signal generated from a ferro-magnetic vessel (함정에서 발생하는 자계신호의 성분분리에 대한 검토)

  • Kim, Young-Hak;Doh, JaeWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2051-2056
    • /
    • 2014
  • This paper investigated the separation of magnetic signal from a ferro-magnetic object. The magnetic signals were ILM(induced longitudinal magnetization) and IVM(induced vertical magnetization), which were induced by earth magnetic field and PLM(permanent longitudinal magnetization) and PVM(permanent vertical magnetization), which were due to a permanent magnetization of the object, respectively. Magnetic signal separation was based on the fact that magnetization vector could be analyzed according to longitudinal and vertical directions. Also the influence of non-uniform magnetic field from a rectangular coil on the separation was examined. A military vessel with a size close to rectangular coil has more errors on the magnetic signal separation.

Development of volume reduction method of cesium contaminated soil with magnetic separation

  • Yukumatsu, Kazuki;Nomura, Naoki;Mishima, Fumihito;Akiyama, Yoko;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.10-13
    • /
    • 2016
  • In this study, we developed a new volume reduction technique for cesium contaminated soil by magnetic separation. Cs in soil is mainly adsorbed on clay which is the smallest particle constituent in the soil, especially on paramagnetic 2:1 type clay minerals which strongly adsorb and fix Cs. Thus selective separation of 2:1 type clay with a superconducting magnet could enable to reduce the volume of Cs contaminated soil. The 2:1 type clay particles exist in various particle sizes in the soil, which leads that magnetic force and Cs adsorption quantity depend on their particle size. Accordingly, we examined magnetic separation conditions for efficient separation of 2:1 type clay considering their particle size distribution. First, the separation rate of 2:1 type clay for each particle size was calculated by particle trajectory simulation, because magnetic separation rate largely depends on the objective size. According to the calculation, 73 and 89 % of 2:1 type clay could be separated at 2 and 7 T, respectively. Moreover we calculated dose reduction rate on the basis of the result of particle trajectory simulation. It was indicated that 17 and 51 % of dose reduction would be possible at 2 and 7 T, respectively. The difference of dose reduction rate at 2 T and 7 T was found to be separated a fine particle. It was shown that magnetic separation considering particle size distribution would contribute to the volume reduction of contaminated soil.

Recovery of Nickel and Copper from Scraped Nickel Condensers

  • Liang, Ruilu;Kikuchi, Eiji;Kawabe, Yoshishige;Sakamoto, Hiroshi;Fujita, Toyohisa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.188-192
    • /
    • 2001
  • Magnetic separation and sulphidization-flotation for recovery of nickel and copper from two types of scraped condenser wastes, containing 8- l4% nickel and 2-4% copper, were studied. The effects of magnetic field intensities, classification, and grinding on the recovery of nickel and copper were investigated. According to the characteristics of nickel and copper in the scraps, classification-magnetic separation, different magnetic field intensities, and stages-grinding-cleaning of rough concentrate were investigated. The nickel concentrates containing 38-65% nickel with 84-97% recoveries and the copper concentrates containing 25-43% nickel with 35-60% recoveries were obtained by classification-magnetic separation. In addition, copper concentrates containing 26-45% copper with 76-88% recoveries were obtained by sulphidization-flotation from magnetic tailings and middling products.

  • PDF