• Title/Summary/Keyword: Magnetic Harmonic Force

Search Result 37, Processing Time 0.024 seconds

A Novel Wound Rotor Type for Brushless Doubly Fed Induction Generator

  • Chen, Xin;Wang, Xuefan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.595-602
    • /
    • 2015
  • The rotor configuration of the brushless doubly fed induction generator (BDFIG) plays an important role in its performance. In order to make the magnetomotive force (MMF) space vector in one set rotor windings to couple both magnetic fields with different pole-pair and have low resistance and inductance, this paper presents a novel wound rotor type for BDFIG with low space harmonic contents. In accordance with the principles of slot MMF harmonics and unequal element coils, this novel rotor winding is designed to be composed of three-layer unequal-pitch unequal-turn coils. The optimal design process and rules are given in detail with an example. The performance of a 700kW 2/4 pole-pair prototype with the proposed wound rotor is analyzed by the finite element simulation and experimental test, which are also carried out to verify the effectiveness of the proposed wound rotor configuration.

Study on the Combination of the Number of Pole and Slot of IPMSM for Vibration Reduction of Electromagnetic Force Fundamental Harmonic Component (전자기력의 기본파 성분 진동저감을 위한 IPMSM의 극 수 슬롯 수 조합에 대한 연구)

  • Shin, Chang-Wook;Son, Hyung-Soo;Yoon, Myung-Hwan;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.726-727
    • /
    • 2015
  • 본 논문은 IPMSM(Interior Permanent Magnetic - Synchronous Motor) 구동 시에 나타나는 전자기력의 기본파 성분의 진동을 분석하였다. 대상 전동기로는 크기가 같고 동일 출력을 내는 14극 12슬롯, 14극 18슬롯 IPMSM을 선정하였다. 두 전동기의 Vibration Order를 수식적으로 검토한 결과 14극 12슬롯 전동기가 14극 18슬롯 전동기에 비해 전자기력의 기본파 성분이 진동에 취약함을 확인하였고, 이를 유한요소해석(FEA)을 통해 검증하였다. 검토결과를 바탕으로 전자기력의 기본파 성분 진동저감을 위한 극 수 슬롯 수 조합에 대해서 분석하였다.

  • PDF

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

A study on Cogging Torque attenuation structure of traction motor (트랙션용 전동기의 코깅토크 감쇄 구조에 관한 연구)

  • Ko, Hyung-Keun;Kim, Byung-Kook;Lee, Sang-Kyu;Cho, Jae-Hee;Park, Tae-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2365-2372
    • /
    • 2011
  • The Cogging Torgue is non-uniform torgue in motor which causes noise and vibration to synchronous motors such as BLDC motor, and regardless of load current, is generated by the interaction between permanent magnet rotor and stator slot which is the force of tangential direction that tends to move into the position where the magnetic energy of motor system is minimal. such Cogging Torgue shall be considered in design stage since it is the main factor of motor's noise and vibration. Understanding that Cogging Torgue is generated by the interaction between relatively low stage harmonic flux density gab of permanent magnet rotor and steel slot of stator. This study proposes the method if reducing Cogging Torgue using response surface method which is a kind of design if experiment.

  • PDF

Design and Analysis of a Material Efficient Sinusoidal Consequent-Pole High-Speed Axial-Flux Machine

  • Kumar, Sunil;Kwon, Byung-il
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.759-766
    • /
    • 2018
  • This paper presents a high-speed axial-flux machine which utilizes the idea of sinusoidal shaped pole combined with a consequent iron-pole. The target of the proposed machine is the cost reduction of the relatively expensive Samarium-Cobalt (SmCo) permanent magnet (PM) material and the torque per PM volume improvement by using sinusoidal consequent-pole rotor. The effectiveness of the proposed machine is validated by comparing it with conventional consequent-pole and with conventional PM machines using 3-D finite element method (FEM) simulations. The comparison and analysis is done in terms of back electro-motive force (back-EMF) harmonic contents, torque per PM volume and torque ripple characteristics. The simulation results show that the proposed machine is suitable and cost-effective for high-speed and high torque per PM volume applications. Furthermore, due to the consequent pole, the magnetic flux saturation and the overload current torque-capability are also presented and discussed in the paper.

Design and optimization of 900kW class PMSG, based on Unison U50 model (Unison U50 직접구동 영구자석 발전기를 기반으로 한 900kW급 동기발전기 설계 및 최적화)

  • Kim, Tae-Hun;Lee, Sang-Woo;Kim, Dong-Eon;Chung, Chin-Wha;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.423-426
    • /
    • 2009
  • POSTECH Graduate School of Wind Energy is trying to upgrade the PMSG used for Unison U50 to 900 kW class. Intensive optimization efforts are carried out the reduce the axial size and total weight of the generator while increasing the rated output to 900 kW. The generator features 3.32m stator inner radius, 671mm stator length, 84 pole, 25 rated rpm and 31.6kN/$m^2$ shear force density. To reduce the gross weight, the stronger magnetic material is applied with optimal magnet size resulting lowest cogging torque. Also, instead of stator skewing the stator, the magnet position along the circumference is optimized to further reduce the cogging torque. This scheme eliminates the stator skewing procedure and may enhance the productivity. This method also reduces the total harmonic distortion. In this report, upgrade method, no-load line to line voltage and phase voltage, cogging torque, loss calculations and thermal analysis are presented.

  • PDF

Development of ETMD(Electromagnetic Tuned Mass Damper) for Smart Control of Structure (구조물 스마트제어를 위한 ETMD(Electromagnetic Tuned Mass Damper)개발)

  • Jeon, Seung-Gon;Heo, Gwang-Hee;Lee, Chin-Ok;Lee, Jae-Hoon;Kim, Dae-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2022
  • The TMD has a simple structure than other vibration control devices and shows excellent control performance for the simple harmonic vibration generated in the structure. However, the vibration control range is narrower than other control devices, making it vulnerable to vibration cycles caused by unexpected external loads. The ETMD developed in this study consisted of Mass with electromagnets. Therefore when supplying a current, the magnetic field is formed to increase the friction force with the friction plate, thereby instantaneously controlling the behavior of the Mass. The experiment was conducted to compare the control performance of the control device by installing the ETMD developed for control performance evaluation in the center of the model simple beam bridge to forced excitation at 3.02 Hz where the maximum bending displacement occurs. As a result of the experiment, ETMD exhibited excellent control performance with a maximum bending displacement attenuation rate of 57.51%.