DOI QR코드

DOI QR Code

Design and Analysis of a Material Efficient Sinusoidal Consequent-Pole High-Speed Axial-Flux Machine

  • Kumar, Sunil (Department of Electronic Systems Engineering, Hanyang University) ;
  • Kwon, Byung-il (Department of Electronic Systems Engineering, Hanyang University)
  • Received : 2018.09.07
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

This paper presents a high-speed axial-flux machine which utilizes the idea of sinusoidal shaped pole combined with a consequent iron-pole. The target of the proposed machine is the cost reduction of the relatively expensive Samarium-Cobalt (SmCo) permanent magnet (PM) material and the torque per PM volume improvement by using sinusoidal consequent-pole rotor. The effectiveness of the proposed machine is validated by comparing it with conventional consequent-pole and with conventional PM machines using 3-D finite element method (FEM) simulations. The comparison and analysis is done in terms of back electro-motive force (back-EMF) harmonic contents, torque per PM volume and torque ripple characteristics. The simulation results show that the proposed machine is suitable and cost-effective for high-speed and high torque per PM volume applications. Furthermore, due to the consequent pole, the magnetic flux saturation and the overload current torque-capability are also presented and discussed in the paper.

Keywords

References

  1. L. Gu, W. Wang, B. Fahimi and M. Kiani, "A Novel High Energy Density Double Salient Exterior Rotor Permanent Magnet Machine," in IEEE Transactions on Magnetics, vol.51, no.3, pp. 1-4, 2015. DOI:10.1109/TMAG.2014.2366081
  2. C. Hwang, S. Hung, C. Liu and S. Cheng, "Optimal Design of a High Speed SPM Motor for Machine Tool Applications," in IEEE Transactions on Magnetics, vol.50, no.1, pp. 1-4, 2014. DOI:10.1109/TMAG.2013.2276092
  3. J. Rao, L. Zhang and G. Zhou, "Rotor design and optimizations for interior permanent magnet machines in motorized spindle application," 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, pp. 1-5, 2017. DOI:10.1109/ICEMS.2017.8056347
  4. W. Wang, H. Hofmann, and C. E. Bakis, "Ultrahigh Speed Permanent Magnet Motor/ Generator for Aerospace Flywheel Energy Storage Applications," IEEE Int. Conf. Electr. Mach. Drives, pp. 1494-1500, 2005. DOI:10.1109/IEMDC.2005.195918
  5. C. Zwyssig, J. W. Kolar, and S. D. Round, "Megaspeed Drive Systems: Pushing Beyond 1 Million r/min," IEEE/ASME Trans. Mechatronics, vol.14, no.5, pp. 564,574, 2009. DOI:10.1109/TMECH.2008.2009310
  6. A. Tuysuz, C. Zwyssig, and J. W. Kolar, "A Novel Motor Topology for High-Speed Micro-Machining Applications," IEEE Transactions on Industrial Electronics, vol.61, no.6, pp. 2960-2968, 2014. DOI:10.1109/TIE.2013.2273481
  7. D. Krahenbuhl, C. Zwyssig, H. Weser, and J. W. Kolar, "A Miniature 500 000-r/min Electrically Driven Turbocompressor," IEEE Transactions on Industry Applications, vol.46, no.6, pp. 2459-2466, 2010. DOI:10.1109/TIA.2010.2073673
  8. M. A. Awadallah and B. Venkatesh, "Energy Storage in Flywheels: An Overview," Canadian Journal of Electrical and Computer Engineering, vol.38, no.2, pp. 183-193, 2015. DOI:10.1109/CJECE.2015.2420995
  9. R. Hebner, J. Beno and A. Walls, "Flywheel batteries come around again," IEEE Spectrum, vol.39, no.4, pp. 46-51, 2002. DOI:10.1109/6.993788
  10. A. Hussain, S. Atiq and B. I. Kwon, "Consequent-Pole Hybrid Brushless Wound-Rotor Synchronous Machine," in IEEE Transactions on Magnetics, 2018. DOI:10.1109/TMAG.2018.2837690
  11. I. Boldea, L. N. Tutelea, L. Parsa, and D. Dorrell, "Automotive electric propulsion systems with reduced or no permanent magnets: An overview," IEEE Transactions on Industrial Electronics, vol.61, no.10, pp. 5696-5711, 2014. DOI:10.1109/TIE.2014.2301754
  12. Y. Gao, R. Qu, D. Li, J. Li and G. Zhou, "Consequent-Pole Flux-Reversal Permanent Magnet Machine for Electric Vehicle Propulsion," in IEEE Transactions on Applied Superconductivity, vol.26, no.4, pp. 1-5, 2016. DOI:10.1109/TASC.2016.2514345
  13. Yolacan and M. Aydin, "Rotor Design Optimization of a New Flux-Assisted Consequent Pole Spoke-Type Permanent Magnet Torque Motor for Low-Speed Applications," in IEEE Transactions on Magnetics, 2018. DOI:10.1109/TMAG.2018.2832076
  14. N. Baloch, B. I. Kwon and Y. Gao, "Low-Cost High-Torque-Density Dual-Stator Consequent-Pole Permanent Magnet Vernier Machine," in IEEE Transactions on Magnetics, 2018. DOI:10.1109/TMAG.2018.2849082
  15. C. Shi, D. Li, R. Qu, H. Zhang, Y. Gao and Y. Huo, "A Novel Linear Permanent Magnet Vernier Machine With Consequent-Pole Permanent Magnets and Halbach Permanent Magnet Arrays," in IEEE Transactions on Magnetics, vol.53, no.11, pp. 1-4, 2017. DOI:10.1109/TMAG.2017.2696559
  16. T. D. Nguyen, K. J. Tseng, S. Zhang and H. T. Nguyen, "A Novel Axial Flux Permanent-Magnet Machine for Flywheel Energy Storage System: Design and Analysis," IEEE Transactions on Industrial Electronics, vol.58, no.9, pp. 3784-3794, 2011. DOI:10.1109/TIE.2010.2089939
  17. T. D. Nguyen, G. Foo, K. J. Tseng and D. M. Vilathgamuwa, "Modeling and Sensorless Direct Torque and Flux Control of a Dual-Airgap Axial Flux Permanent Magnet Machine With Field-Weakening Operation," IEEE/ASME Transactions on Mechatronics, vol.19, no.2, pp. 412-422, 2014. DOI:10.1109/TMECH.2013.2242481
  18. T. D. Nguyen, K. J. Tseng, S. Zhang and H. T. Nguyen, "On the modeling and control of a novel flywheel energy storage system," 2010 IEEE International Symposium on Industrial Electronics, pp. 1395-1401, 2010. DOI:10.1109/ISIE.2010.5637797
  19. S. Kumar, W. Zhao, Z. Du, T. A. Lipo, and B. I. Kwon, "Design of Ultra-high Speed Axial Flux Permanent Magnet Machine with Sinusoidal Back-EMF for Energy Storage Application," IEEE Transactions on Magnetics, vol.51, no.11, pp. 1-4, 2015. DOI:10.1109/TMAG.2015.2451162
  20. S. Kumar, T. A. Lipo and B. I. Kwon, "A 32,000 r/min Axial Flux Permanent Magnet Machine for Energy Storage With Mechanical Stress Analysis," IEEE Transactions on Magnetics, vol.52, no.7, pp. 1-4, 2016. DOI:10.1109/TMAG.2015.2512939