• 제목/요약/키워드: Magnetic Harmonic Force

검색결과 37건 처리시간 0.024초

설계 변수에 따른 리니어 스위치드 릴럭턴스 전동기의 힘특성 해석 (Force Characteristic Analysis of Linear Switched Reluctance Motor according to Design Parameter)

  • 장석명;박지훈;최장영;유대준;고경진;성호경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.77-79
    • /
    • 2008
  • This paper deals with extraction of design parameters of Linear Switched Reluctance Motor (LSRM) based on force calculation using space harmonic analysis, 2D Finite Element Method (FEM) and experimental measurement. First, analytical solutions for flux density due to mover winding currents are derived in terms of magnetic vector potential and a 2D rectangular coordinate system, for the case when the mover is located at aligned and unaligned position. The analytical results are compared with those obtained from a 2D FEM Second, using Fourier series expansion, this paper predicts the force profile of LSRM analytically.

  • PDF

전동 지게차용 3 상 유도 모터의 소음 진동 특성에 대한 연구 (A Study on the Characteristic of Noise and Vibration in 3-Phase Induction Motor for the Forklift)

  • 김우형;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.764-769
    • /
    • 2007
  • This paper is studied the noise and vibration characteristics analysis of the three-phase induction AC motor of the electrical forklift. And we suggest the method which the reduction orders the noise and vibration to be the mechanical. In other to investigate these characteristics, we considered the mechanical characteristics, the electromagnetic effects, and these interactions. In mechanical, we studied the characteristic of the stator, the bearing supported condition of the rotor, and the sound radiation. In electronically, this paper is considered the harmonic effect which is related the magnetic motive force (mmf) with respect to the characteristic of the slot number of the rotor and the stator and the pole number of the motor. Finally we investigated the overall noise and vibration of the induction motor by relations between the electronically harmonic and the mechanical resonance of the stator. By the analysis of the generally three-phase induction motor, we suggest the design methodology to low noise and vibration.

  • PDF

인버터 구동형 유도전동기의 동특성 해석 (Dynamic Characteristics Analysis of Induction Motor by Using Inverter)

  • 구대현;김경호;이병삼;한진우;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.927-929
    • /
    • 2001
  • Induction Motor fed by PWM inverter generates the sound and the vibration because of harmonic current and magnetic force characteristics. This paper is investigated the harmonic frequency and noise characteristics of the current and the torque of the induction motor when the input voltage is excited as the sine wave or PWM wave. The performance characteristics of induction motor is analyzed by the F.E.M and the theoretical method.

  • PDF

Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • 제68권3호
    • /
    • pp.359-368
    • /
    • 2018
  • This paper deals with the dynamic stability of nanocomposite pipes conveying pulsating ferrofluid. The pipe is reinforced by carbon nanotubes (CNTs) where the agglomeration of CNTs are considered based on Mori-Tanaka model. Due to the existence of CNTs and ferrofluid flow, the structure and fluid are subjected to axial magnetic field. Based on Navier-Stokes equation and considering the body forced induced by magnetic field, the external force of fluid to the pipe is derived. For mathematical modeling of the pipe, the first order shear deformation theory (FSDT) is used where the energy method and Hamilton's principle are used for obtaining the motion equations. Using harmonic differential quadrature method (HDQM) and Bolotin's method, the motion equations are solved for calculating the excitation frequency and dynamic instability region (DIR) of the structure. The influences of different parameters such as volume fraction and agglomeration of CNTs, magnetic field, structural damping, viscoelastic medium, fluid velocity and boundary conditions are shown on the DIR of the structure. Results show that with considering agglomeration of CNTs, the DIR shifts to the lower excitation frequencies. In addition, the DIR of the structure will be happened at higher excitation frequencies with increasing the magnetic field.

영구자석 형상 최적화를 통한 Moving Magnet type PMLSM의 성능 향상 (The Improvement of Performance for Moving Magnet type PMLSM by Permanent magnet Shape Optimization)

  • 윤강준;이동엽;정춘길;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.40-42
    • /
    • 2004
  • In this paper, optimum shape design of permanent magnet in slotted type Permanent Magnet Linear Synchronous Motor(PMLSM) is progressed for minimization of detent force owing to structure of slot-teeth and thrust ripple by harmonic magnetic flux of permanent magnet. The characteristics of thrust and detent force computed by Finite element Analysis are acquired equal effect both skewed basic model and optimum model which is optimization of permanent magnet shape.

  • PDF

가동 영구자석형 PMLSM 추력리플 최소화를 위한 영구자석 형상 최적화 (Permanent Magnet Shape Optimization of Moving Magnet type PMLSM for Thrust Ripple Minimization)

  • 윤강준;이동엽;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.53-59
    • /
    • 2005
  • In this paper, optimum shape design of permanent magnet in slotted type Permanent Magnet Linear Synchronous Motor(PMLSM) is progressed for minimization of detent force owing to structure of slot-teeth and thrust ripple by harmonic magnetic flux of permanent magnet. In order to reduce remodeling time as changing design parameter for Permanent Magnet shape optimization, the moving model node technique was applied. The characteristics of thrust and detent force computed by finite element analysis are acquired equal effect both skewed basic model and optimum model which is optimization of permanent magnet shape. In addition to, thrust per unit volume is improved 4.l2[%] in optimum model.

Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.21-31
    • /
    • 2018
  • In this work, the dynamic stability of carbon nanotubes (CNTs) reinforced composite pipes conveying pulsating fluid flow is investigated. The pipe is surrounded by viscoelastic medium containing spring, shear and damper coefficients. Due to the existence of CNTs, the pipe is subjected to a 2D magnetic field. The radial induced force by pulsating fluid is obtained by the Navier-Stokes equation. The equivalent characteristics of the nanocomposite structure are calculated using Mori-Tanaka model. Based on first order shear deformation theory (FSDT) or Mindlin theory, energy method and Hamilton's principle, the motion equations are derived. Using harmonic differential quadrature method (HDQM) in conjunction with the Bolotin's method, the dynamic instability region (DIR) of the system is calculated. The effects of different parameters such as volume fraction of CNTs, magnetic field, boundary conditions, fluid velocity and geometrical parameters of pipe are shown on the DIR of the structure. Results show that with increasing volume fraction of CNTs, the DIR shifts to the higher frequency. In addition, the DIR of the structure will be happened at lower excitation frequencies with increasing the fluid velocity.

A New Method to Estimate the Magnetic Field Modulation Effect of Brushless Doubly-Fed Machine with Cage Rotor

  • Liu, Hanghang;Han, Li;Gao, Qiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.330-335
    • /
    • 2012
  • Brushless doubly-fed machine (BDFM) doesn't use brush and slip ring, and has advantages such as high system reliability, small capacity of its frequency converter, low system cost, adjustable power factor and speed, etc. At the same time, it has good applicable potentials on the variable frequency motors and the variable speed constant frequency generators. However, due to the complicacy and particularity of BDFM in the structure and operating mechanism, the effect of magnetic field modulation directly influences the operating efficiency of BDFM. To study the effect of different cage rotor structures on the magnetic field modulation of BDFM, the rotor magnetomotive force (MMF) of BDFM with cage rotor is studied by the analytical method. The components and features of rotor harmonic MMFs are discussed. At the same time, the method to weaken the higher harmonics is analyzed by the theoretic formulae. Furthermore, the magnetic field modulation mechanism is expounded on in detail and the relationship between the magnetic field modulation effect and the operating efficiency of BDFM is established. And then, a new method for estimating the magnetic field modulation effect is proposed. At last, the magnetic field modulation effects of four BDFM prototypes with different cage rotor structures are compared by the MMF analysis and the efficiency data of electromagnetic design. The results verify the effectiveness of the new method for estimating the magnetic field modulation effect of BDFM with cage rotor.

공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석 (Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method)

  • 서성원;최장영;김일중
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.688-695
    • /
    • 2017
  • 본 논문은 파력 에너지 수집 장치에 사용할 수 있는 영구자석 선형 동기발전기의 특성 해석에 관한 것이다. 파력 에너지는 요요시스템과 같은 기구로 부터 얻어진다. 영구자석을 이용한 선형 발전기는 영구자석의 자력을 통해 별도의 전원공급이 필요 없고 유지 보수가 간단한 장점을 가지고 있다. 또한 높은 에너지 밀도를 갖는 희토류의 사용으로 영구자석 기기는 소형화 및 경량화가 가능하며 보다 높은 에너지 변환 효율을 얻을 수 있다. 영구자석 선형 동기발전기 특성 해석을 위해 2차원 극 좌표계 및 자기 벡터 포텐셜에 근거하여 영구자석과 전기자 반작용 자계해석을 수행 하였다. 해석 해를 이용하여 정현적인 속도입력에 의해 유도되는 유기기전력의 특성 식을 유도하고, 동일한 방법으로 역기전력 상수, 저항, 자기인덕턴스와 상호인덕턴스와 같은 전기적 파라미터를 얻었다. 본 논문에서 사용한 공간고조파법의 결과는 2차원 유한요소해석법 결과와 비교하여 잘 일치하는 것을 확인하였다. 이 결과는 영구자석 형 선형 발전기의 특성을 이해하는 것과 해석방법의 비교연구, 설계 최적화, 그리고 기기의 동적 모델링에 기여할 수 있다.

Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상 (Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition)

  • 김희운;윤진규;허진
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.