• Title/Summary/Keyword: Magnetic Couple

Search Result 52, Processing Time 0.025 seconds

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.

Decoupling of Thrust Force and Levitation Force of Transverse Flux Linear Induction Motor by the Active Compensation of Magnetic force across the Air-Gap (공극력의 능동적 보상을 통한 횡자속 선형 유도 구동기의 추력과 부상력의 비연성화)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.91-98
    • /
    • 2004
  • TFLIM(Transverse Flux Linear Induction Motor), making its closed magnetic path with the direction of the traveling field orthogonal, had been developed to decrease an edge effect of the general induction motor. To control the levitation force and the thrust force on the secondary part of TFLIM independently, the various methodologies have been presented. When we try to achieve the independent control using only the multi-phase inputs assigned in the stator coils as an approach, in which condition we can minimize the coupling effect between two forces\ulcorner In this paper, we show the qualitative influence of a slip frequency, an ac magnitude, a dc offset superposed in the ac power, and a major parameter of TFLIM on the couple through the computer simulation. And to realize the independent motions between levitation and thrust motion without any auxiliary means fur isolation of the secondary part of TFLIM, the decouple compensator is suggested, including the experimental results.

Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings

  • Mohammadimehr, Mehdi;Meskini, Mohammad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.69-82
    • /
    • 2020
  • In this study, the free and forced vibration analysis of micro sandwich plate with porous core layer and magneto-electric face sheets based on modified couple stress theory and first order shear deformation theory under simply supported boundary conditions is illustrated. It is noted that the core layer is composed from balsa wood and also piezo magneto-electric facesheets are made of BiTiO3-CoFe2O4. Using Hamilton's principle, the equations of motion for micro sandwich plate are obtained. Also, the Navier's method for simply support boundary condition is used to solve these equations. The effects of applied voltage, magnetic field, length to width ratio, thickness of porous to micro plate thickness ratio, type of porous, coefficient of porous on the frequency ratio are investigated. The numerical results indicate that with increasing of the porous coefficient, the non-dimensional frequency increases. Also, with an increase in the electric potential, the non-dimensional frequency decreases, while and with increasing of the magnetic potential is vice versa.

Improved Magnetic Anisotropy of YMn1-$xCrxO_3 $ Compounds

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.218-218
    • /
    • 2012
  • Recently, hexagonal manganites have attracted much attention because of the coexistence of ferroelectricity and antiferromagnetic (AFM) order. The crystal structure of hexagonal manganites consists of $MnO_5$ polyhedra in which $Mn^{3+}$ ion is surrounded by three oxygen atoms in plane and two apical oxygen ions. The Mn ions within Mn-O plane form a triangular lattice and couple the spins through the AFM superexchange interaction. Due to incomplete AFM coupling between neighboring Mn ions in the triangular lattice, the system forms a geometrically-frustrated magnetic state. Among hexagonal manganites, $YMnO_3$, in particular, is the best known experimentally since the f states are empty. In addition, for applications, $YMnO_3$ thin films have been known as promising candidates for non-volatile ferroelectric random access memories. However, $YMnO_3$ has low magnetic order temperature (~70 K) and A-type AFM structure, which hinders its applications. We have synthesized $YMn1_{-x}Cr_xO_3$ (x = 0, 0.05 and 0.1) samples by the conventional solid-state reaction. The powders of stoichiometric proportions were mixed, and calcined at $900^{\circ}C$ for $YMn1_{-x}Cr_xO_3$ for 24 h. The obtained powders were ground, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, and heated up to $1,300^{\circ}C$ and sintered in air for 24 h. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu $K{\alpha}$ radiation. All the magnetization measurements were carried out with a superconducting quantum-interference-device magnetometer. Our experiments point out that the Cr-doped samples show the characteristics of a spin-glass state at low temperatures.

  • PDF

Realization of full magnetoelectric control at room temperature

  • Chun, Sae-Hwan;Chai, Yi-Sheng;Oh, Yoon-Seok;Kim, In-Gyu;Jeon, Byung-Gu;Kim, Han-Bit;Jeon, Byeong-Jo;Haam, S.Y.;Chung, Jae-Ho;Park, Jae-Hoon;Kim, Kee-Hoon
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.101-101
    • /
    • 2011
  • The control of magnetization by an electric field at room temperature remains as one of great challenges in materials science. Multiferroics, in which magnetism and ferroelectricity coexist and couple to each other, could be the most plausible candidate to realize this long-sought capability. While recent intensive research on the multiferroics has made significant progress in sensitive, magnetic control of electric polarization, the electrical control of magnetization, the converse effect, has been observed only in a limited range far below room temperature. Here we demonstrate at room temperature the control of both electric polarization by a magnetic field and magnetization by an electric field in a multiferroic hexaferrite. The electric polarization rapidly increases in a magnetic field as low as 5 mT and the magnetoelectric susceptibility reaches up to 3200 ps/m, the highest value in single phase materials. The magnetization is also modulated up to 0.34 mB per formula unit in an electric field of 1.14 MV/m. Furthermore, this compound allows nonvolatile, magnetoelectric reading- and writing-operations entirely at room temperature. Four different magnetic/electric field writing conditions generate repeatable, distinct M versus E curves without dissipation, offering an unprecedented opportunity for a multi-bit memory or a spintronic device applications.

  • PDF

A Novel Wound Rotor Type for Brushless Doubly Fed Induction Generator

  • Chen, Xin;Wang, Xuefan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.595-602
    • /
    • 2015
  • The rotor configuration of the brushless doubly fed induction generator (BDFIG) plays an important role in its performance. In order to make the magnetomotive force (MMF) space vector in one set rotor windings to couple both magnetic fields with different pole-pair and have low resistance and inductance, this paper presents a novel wound rotor type for BDFIG with low space harmonic contents. In accordance with the principles of slot MMF harmonics and unequal element coils, this novel rotor winding is designed to be composed of three-layer unequal-pitch unequal-turn coils. The optimal design process and rules are given in detail with an example. The performance of a 700kW 2/4 pole-pair prototype with the proposed wound rotor is analyzed by the finite element simulation and experimental test, which are also carried out to verify the effectiveness of the proposed wound rotor configuration.

Development of a Linear Motor Dynamometer for Positioning Control Performance Test (Linear모터의 위치 제어 성능 시험을 위한 Dynamometer 개발)

  • Roh Chang-Yul;Rho Myung-Hwan;Kim Ju-Kyung;Park Jong-Jin;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.609-614
    • /
    • 2006
  • Recently linear motor has been used mainly for high speed feeding performance of machine tools. The advantages of linear motor are not only high speed but high accuracy, because it is not required the coupling and ballscrew for converting rotary to liner motion. Before applying in different moving system, the dynamometer is necessary to test the performance. In Korea, the linear motor is producing in a couple of company However, the liner motor dynamometer is not commercialized yet, like as rotary motor dynamometer. In this paper, a linear motor dynamometer is designed and manufactured using a MR damper. The dynamometer system developed in this study could be used for testing the positioning accuracy fur different loading conditions, traction forces, dynamic performance and so on.

Sloshing of liquids in partially filled tanks - a review of experimental investigations

  • Eswaran, M.;Saha, Ujjwal K.
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.131-155
    • /
    • 2011
  • Liquid sloshing constitutes a broad class of problems of great practical importance with regard to the safety of liquid transportation systems, such as tank trucks on highways, liquid tank carriages on rail roads, ocean going vessels and propellant tanks in liquid rocket engines. The present work attempts to give a review of some selected experimental investigations carried out during the last couple of decades. This paper highlights the various parameters attributed to the cause of sloshing followed by effects of baffles, tank inclination, magnetic field, tuned liquid dampers, electric field etc. Further, recent developments in the study of sloshing in micro and zero gravity fields have also been reported. In view of this, fifteen research articles have been carefully chosen, and the work reported therein has been addressed and discussed. The key issues and findings have been compared, tabulated and summarized.

Implementation of a modified TE$_{113}$/TM$_{012}$ triple-mode waveguide bandpass filter (변형된 TE$_{113}$/TM$_{012}$ 삼중모드 도파관 대역통과여파기의 구현)

  • 정근욱;이재현;박광량;김재명
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.70-77
    • /
    • 1996
  • In this paper, a modifed TE$_{113}$/TM$_{012}$ triple-mode bandpass filter is implemented by using a modified inter-cavity iris in which the number of slots are reduced upto 50%. In a coventioanl iris two prirs of slot apertures are used to independently couple three resonant modes between two adjacent cavities. However, if transverse magnetic polarizability of a pair of veritcal slot apertures is used to control weak horizontal TE$_{h}$-TE$_{h}$ mode coupling, the width of novel iris slots would substitute for the slot length of the conventional iris, causing to eliminate the horizontal slot apertures. The measured data of two filters, which are the modified filter and ocnventional one, are compared. Experimental result shows that the characteristics of the novel triple-mode filter matches well that of the conventional filter.

  • PDF

2.5 Dimensional Electromagnetic Finite Element Numerical modeling using linear conductivity variation (선형적 물성변화를 고려하는 유한요소법을 이용한 2.5차원 전자탐사 수치모델링)

  • Ko, Kwang-Beom;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.131-138
    • /
    • 1998
  • Numerical modeling for electromagnetic exploration methods are essential to understand behaviours of electromagnetic fields in complex subsurfaces. In this study, a finite element method was adopted as a numerical scheme for the 2.5-dimensional forward problem. And a finite element equation considering linear conductivity variation was proposed when 2.5-dimensional differential equation to couple eletric and magnetic field was implemented. Model parameters were investigated for near-field with large source effects and far-field with responses dominantly by homogeneous half-space. Numerical responses by this study were compared with analytic solutions in homogeneous half-space and compared with other three dimensional numerical results.

  • PDF