• Title/Summary/Keyword: Magnetic Circuit Analysis

Search Result 590, Processing Time 0.025 seconds

Modeling of a bearingless motor using distributed magnetic circuit (분산 자기 회로를 이용한 베어링리스 모터의 모델링)

  • 박창용;박수진;노명규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.212-216
    • /
    • 2004
  • Bearingless motors are the rotational electric machine which utilize a common magnetic structure for rotation and magnetic suspension. Since the bearing function is combined with the motor, the shaft length can be shortened resulting in higher critical speeds. Relationship between suspension force and current of bearingless motor is clearly derived by prior research. However, relationship between displacement of rotor and suspension force is not precisely defined. In this paper, we present model of bearingless motor describing the radial force variation due to the movement of the rotor. Using a distributed magnetic circuit and maxwell stress tensor, we derived a mathematical expression for the radial force. For a slotless bearingless motor, we are able to find an analytical model presented in the form of stiffness. For a slotted motor, we can compute the stiffness by semi-analytical analysis. This model is validated by a finite-element-analysis.

  • PDF

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang;Sun, Jinji;Han, Weitao;Ren, Hongliang
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Design and Characteristics Analysis of a Transverse Flux Type Switched Reluctance Motor (횡자속형 스위치드 리럭턴스 전동기의 설계 및 특성 해석)

  • Kim, Gyeong-Ho;Jo, Yun-Hyeon;Gu, Dae-Hyeon;Jeong, Yeon-Ho;Gang, Do-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • The paper proposes the characteristics analysis for a Transverse flux type Switched Reluctance Motor(TSRM) considering the nonlinear magnetic phenomena. To investigate the nonlinear parameters of magnetic equivalent circuit, the designed TSRM is analyzed by the 2D and 3D finite element method as functions of input current and angular displacement. On the base of FEM analysis results, the current, torque, back EMF and output power wave of TSRM are simulated from the motion equation by MATLAB/Simulink. The simulated performance characteristics for a 4-phase, 24-pole TSRM are verified by experimental results of a prototype TSRM.

Design of Magnetic Circuit of Line-start Permanent Magnet Synchronous Motor to Develop the Characteristics at the Steady State (정상상태 특성 개선을 위한 단상 영구자석형 동기기의 자기회로 설계)

  • Oh, Young-Jin;Nam, Hyuk;Jung, Seung-Kyu;Hong, Jung-Pyo;Jung, Tae-Uk;Baek, Seung-Myun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.254-261
    • /
    • 2003
  • This study investigates magnetic circuit design of the Single-phase Line-start Permanent Magnet Synchronous Motor (LSPM) to develop the characteristics in steady state. In this paper, the saliency ratio, that is the ratio of q-axial inductance to d-axial inductance, and the inductance difference between q-axial inductance and d-axial inductance are increased. Design factor is selected permanent magnet position and rotor diameter. The analysis method of the synchronous motor on d-/q- axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Back-emf and d-q- axial inductance is analyzed by using 2 dimensional Finite Element Method (FEM). Characteristic analysis results with variation of design factor are reflected magnetic circuit design of LSPM. The characteristics of design model are compared with the characteristic of initial model.

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer (전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측)

  • Ahn, Hyun-Mo;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.

A New Definition of Short-circuit Ratio for Multi-converter HVDC Systems

  • Liu, Dengfeng;Shi, Dongyuan;Li, Yinhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1958-1968
    • /
    • 2015
  • In this paper, a new definition of short-circuit ratio concept for multi-converter HVDC systems is proposed. Analysis results of voltage interaction between converters show that the reactive power-voltage characteristic of a converter has a dominant effect on voltage interaction level compared with its active power-voltage characteristic. Such a relation between converter reactive power and voltage interaction level supports taking the former into account in the definition of short-circuit ratio concept for multi-converter systems. The proposed definition is verified by the method of maximum power curve for various system configurations. Furthermore, a formula to calculate transient overvoltage for multi-converter systems is derived based on the proposed definition, and the efficiency of the derived formula is verified.

Analysis of Two-phase E-core Switched Reluctance Machines Using Magnetic Equivalent Circuit Technique (자기등가회로 기법을 사용한 2상 E-core SRM의 해석에 관한 연구)

  • Lee, Chee-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1986-1989
    • /
    • 2010
  • The modification of magnetic structures for an E-core switched reluctance machine (SRM) comprising two segmented stator cores or a monolithic stator core is presented for ease of assembly, good manufacturability, mechanical robustness, and electromagnetic performance improvement. The E-core stator has four small poles with phase windings and two or four large poles (hereafter referred to as common poles), in between. The common poles are shared by both phases for positive torque generation during the entire operation. The E-core SRMs are compared to a conventional two-phase SRM. The comparison includes cost savings, torque, copper and core losses, and efficiency in order to validate the distinct features of the E-core SRMs. Magnetic equivalent circuit (MEC) technique is employed for proving the benefits of the E-core common-pole structure.

Analysis for Magnetic field generated in the Flux-Lock Type Reactor using HTSC during a fault time (고온초전도체를 이용한 자속구속 리액터의 사고시 발생되는 자계 분석)

  • Lim, Sung-Hun;Choi, Hyo-Sang;Kang, Hyeong-Gon;Ko, Seok-Cheol;Lee, Jong-Hwa;Choi, Myung-Ho;Song, Jae-Joo;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.601-604
    • /
    • 2003
  • The magnetic field generated in the iron core, which is required for the magnetic field to link each coil of the flux-lock type reactor, affects the fault current limiting characteristics of the flux-lock type high-Tc superconducting fault current limiter(SFCL). By applying numerical analysis for equivalent circuit of flux-lock type SFCL, the magnetic field induced in the iron core including currents of each coil was investigated. Through the analysis of magnetic field, we have analyzed that the magnetic field linked the 3rd coil, which is wound in the iron core, prevents the saturation of the iron core, but decreases the impedance of the flux-lock type SFCL.

  • PDF

Analysis of a Surface-Mounted Permanent-Magnet Machine with Overhang Structure by Using a Novel Equivalent Magnetic Circuit Model

  • Yeo, Han-Kyeol;Woo, Dong-Kyun;Lim, Dong-Kuk;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1960-1966
    • /
    • 2014
  • The rotor overhang is used to enhance the air-gap flux and improve the power density. Due to the asymmetry in the axial direction caused by the overhang, a time consuming 3D analysis is necessary when designing a motor with overhang. To solve this problem, this paper proposes an equivalent magnetic circuit model (EMCM) which takes account overhang effects without a 3D analysis by using effective air-gap length. The analysis time can be reduced significantly via the proposed EMCM. A reduction in the analysis time is essential for a preliminary design of a motor. In order to verify the proposed model, a 3-D finite-element method (FEM) analysis is adopted. 3-D FEM results confirm the validity of the proposed EMCM.