• Title/Summary/Keyword: Magnetic Circuit Analysis

Search Result 592, Processing Time 0.035 seconds

Design and Characteristic Analysis of MC-LOA taking into account the Magnetic Circuit unequivalence (자기회로의 불평형을 고려한 MC-LOA의 설계 및 특성 해석)

  • Eum, Sang-Joon;Kim, Duk-Hyun;Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.145-147
    • /
    • 1999
  • A voice type Moving Coil Linear Oscillatory Actuator(MC-LOA) has unbalanced magnetic circuit structure. Its asymmetric magnetic flux distribution along the mover directions causes shifting of displacement center to one side. Therefore, this paper analyzes both thrust and displacement characteristics and settles the unbalanced flux problem by performing shape optimization. The propriety of the improved design model has been verified by dynamic analysis based on the coupling of kinetic and electric equations.

  • PDF

Development of Characteristics Analysis Program (FEMCAD) for IPMSMs (매입형 영구자석 동기전동기 (IPMSMs) 특성해석 프로그램 (FEMCAD) 개발)

  • Kim, Young-Kyoun;Rhyu, Se-Hyun;Jung, In-Soung;Hur, Jin;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1035-1036
    • /
    • 2007
  • This paper presents the characteristics analysis of Interior Permanent Magnet Synchronous Motors(IPMSMs). The development of this program is based on Matlab. In oder to achieve the development of the program, basis algorithm for IPMSMs analysis took advantage of equivalent magnetic circuit analysis technique. The equivalent magnetic circuit analysis for IPMSMs are based on a rotate synchronous d-q reference frame. The mathematical model of the d-q frame voltage equations is used frequently for the analysis of IPMSMs. This program can consider a cross saturation effect and a iron loss and mechanical loss, and provide fast analysis results of IPMSMs characteristics.

  • PDF

Quench analysis and protection circuit design of a superconducting magnet system for RISP 28GHz ECR ion source

  • Song, S.;Ko, T.K.;Choi, S.;Ahn, M.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.37-41
    • /
    • 2016
  • This paper presents the developed quench analysis code and protection circuit design for a superconducting magnet system of 28GHz electron cyclotron resonance (ECR) ion source. The superconducting magnet is composed of a hexapole magnet and four solenoid magnets located outside of the hexapole one. All magnets are wound with NbTi composite wire and impregnated by epoxy. By using the developed characteristic analysis code, the normal zone resistance, decaying current and temperature rising can be estimated during quench. Also, the stored magnetic energy is successfully consumed from the series resistor of the designed protection circuit. The analytical results are compared with the experimental results to verify the developed quench analysis code and protection circuit.

Characteristics Simulation of Electronics Cooling for a High-Temperature Superconducting Flux Flow Transistor Circuit (고온 초전도 자속흐름 트랜지스터에 적용된 전자냉각 특성 시뮬레이션)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Du, Ho-Ik;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1063-1066
    • /
    • 2002
  • An equivalent circuit for the superconductor flux flow transistor(SFFT) was combined with high temperature cooling device, based on the analogy between thermal and electrical variables using the high-temperature superconductor(HTS), is proposed. The device is composed of parallel weak links with a nearby magnetic control line. A model has been developed that is based on solving the equation of motion of Abrikosov vortices subject to Lorentz viscous and pinning forces as well as magnetic surface barriers. The use of thermal models the global performance of thermal cooling circuit and signal system to be checked by using electrical circuit analysis programs such as SPICE.

  • PDF

Circular Holes Punched in a Magnetic Circuit used in Microspeakers to Reduce Flux Leakage

  • Xu, Dan-Ping;Jiang, Yuan-Wu;Lu, Han-Wen;Kwon, Joong-Hak;Hwang, Sang-Moon
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.387-392
    • /
    • 2016
  • Lower flux leakage designs have become important in the development of microspeakers used in thin and miniaturized mobile phones. We propose four methods to reduce the flux leakage of the magnetic circuit in a microspeaker. Optimization was performed based on the proposed approach by using the response surface method. Electromagnetic analyses were conducted using the finite element method. Experimental results are in good agreement with the simulated results obtained in one degree-of-freedom analysis from 100 to 5 kHz. Both the simulated and experimental results confirm that one of the proposed methods is much more effective in reducing flux leakage than the other methods. In the optimized method, compared with a default approach, the average radial flux density in the air gap decreased only by 5.5%, the maximum flux leakage was reduced by 28.6%, and the acoustic performance at primary resonance decreased by 0.45 dB, which gap is indiscernible to the human ear.

A Study on the Effect of Resonant Coil Size and Load Resistance on the Transmission Efficiency of Magnetic Resonance Wireless Power Transfer System (공진 코일의 크기와 부하 저항이 자계 공명 무선 전력 전송 장치의 전달 효율에 주는 영향에 관한 연구)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the wireless power transfer system using the magnetic resonance was designed and the effect of resonant coil radius and load resistance to this system was analyzed by the circuit analysis method. As a result, the calculated transmitted-power is similar to measured one, and the coil size has a small effect to the coupling coefficients in the resonant frequency band. In addition, the fact that the calculated transmitted-power according to the source frequency is similar to measured one confirms that the circuit analysis methode in this paper is valid. The input side transmission efficiency ${\eta}_i$ including only the loss in the power transfer circuit is almost 90[%] with the large coil in the 10[cm] transfer distance, and 65[%] with the small coil in 1[cm]. The source side transmission efficiency ${\eta}_s$ is 30~40[%] at both coil when load resistance below 4.7[${\Omega}$] has been connected. Considering that the maximum ${\eta}_s$ is 50[%], this is valid in the practical applications.

Optimal Design of MR Damper : Analytical Method and Finite Element Method (MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법)

  • Ha, Sung-Hoon;Seong, Min-Sang;Heung, Quoc-Nguyen;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.581-586
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff’s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

  • PDF

Optimal Design of MR Damper : Analytical Method and Finite Element Method (MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법)

  • Ha, Sung-Hoon;Seong, Min-Sang;Heung, Quoc-Nguyen;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1110-1118
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff' s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

New Battery Balancing Circuit using Magnetic Flux Sharing

  • Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.194-201
    • /
    • 2014
  • To increase the capacity of secondary cells, an appropriate serial composition of the battery modules is essential. The unbalance that may occur due to the series connection in such a serial composition is the main cause for declines in the efficiency and performance of batteries. Various studies have been conducted on the use of a passive or active topology to eliminate the unbalance from the series circuit of battery modules. Most topologies consist of a complex structure in which the Battery Management System (BMS) detects the voltage of each module and establishes the voltage balancing in the independent electrical power converters installed on each module by comparing the module voltage. This study proposes a new magnetic flux sharing type DC/DC converter topology in order to remove voltage unbalances from batteries. The proposed topology is characterized by a design in which all of the DC/DC convertor outputs connected to the modules converge into a single transformer. In this structure, by taking a form in which all of the battery balancing type converters share magnetic flux through a single harmonic wave transformer, all of the converter voltages automatically converge to the same voltage. This paper attempts to analyze the dynamic properties of the proposed circuit by using a Programmable Synthesizer Interface Module (PSIM), which is useful for power electronics analysis, while also attempting to demonstrate the validity of the proposed circuit through experimental results.

A Study on the Vibration Analysis of Linear Stepping Motor using FEM and ACSL (유한요소법과 ACSL을 이용한 Linear Stepping Motor의 진동해석에 관한 연구)

  • 이상호;정도영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.122-128
    • /
    • 2004
  • In this paper, the vibration characteristics of a linear stepping motor(LSM) are analyzed using the ACSL. A magnetic equivalent circuit is based on the structure of the LSM, and then the electric equivalent circuit of the LSM is derived by solving equations for the magnetic equivalent circuit. A normal force is calculated using finite element method(FEM). And the vibration characteristics(continuous vibration) of the LSM are simulated by the ACSL(Advanced Continuous Simulation language) with the voltage equations, the thrust equation, the normal force equation and the kinetic equation.