• Title/Summary/Keyword: Magnetic Circuit Analysis

Search Result 590, Processing Time 0.026 seconds

Equivalent Circuit Analysis of Single Phase Induction Motor Considering Magnetic Saturation Characteristics (자기포화 특성을 고려한 단상유도전동기의 등가회로 해석)

  • Kim, Young Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.270-277
    • /
    • 2013
  • Single phase induction motor(SPIM) is used widely because it is driven by single phase source. However, the efficiency of the motor is not good due to saturation of magnetic material. To analyze the motor accurately, the magnetic saturation characteristics should be considered in analysis of equivalent circuit. In this paper, lumped parameter of circuit are derived from multi phase induction motor using method of symmetrical coordinates. Also, we presents a method for the equivalent circuit analysis of SPIM using magnetic saturation rate. The magnetic nonlinearity is considered deriving magnetizing reactance from voltage-current saturation curve. As a results, current characteristic, torque, output and efficiency are shown through analysis of equivalent circuit. A simulation results of SPIM will be used to improve the characteristics and efficiency of motor.

Dynamic Analysis of the PM-type Magnetic Circuit Breaker Using Magnetic Euivalent Circuit (자기 등가회로법에 의한 영구자석형 차단기 조작기의 동작 특성 해석)

  • Jun, H.D.;Kwon, B.I.;Woo, K.I.;Kim, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.669-671
    • /
    • 2001
  • This paper describes the operating characteristic analysis of PM-type magnetic circuit breaker for electromagnetic field, electric circuit and mechanical motion problems. Transient calculations are based upon the magnetic equivalent circuit analysis including non-linearity of materials and using iteration routines. The analysis results of this magnetic equivalent circuit are compared with those of FEM.

  • PDF

Analysis and Design Actuator of Using Magnetostrictive Material (자기왜형 물질을 이용한 액츄에이터의 설계 및 특성해석)

  • Jang, S.M.;Cha, S.D.;Lim, C.U.;Jeong, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.751-753
    • /
    • 2001
  • The characteristic of magnetostrictive is to change shape in a magnetic field, TERFENOL-D is said to produce magnetostriction. A magneto strictive actuator need to the magnetic circuit. The most important design consideration is the magnetic circuit. The magnetic circuit consists of the solenoid coil, permanets for bias and shaping of the other parts through which the magnetic field passes. A good magnetic circuit ensures the proper magnetic field in th TERFENOL-D and very uniform magnetic field in all phases of the actuator operating cycle. This paper presents magnetic circuit design and analysis uesing FEM.

  • PDF

The design of magnetic circuit of magnetostrictive actuator using finite element method (유한 요소 해석을 통한 자기변형 구동기 자기 회로 설계)

  • 이석호;박영우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.548-551
    • /
    • 2004
  • Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of ${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit.

  • PDF

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit (자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Go, Ju-Chan;Lim, Seung-Taek;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

Design and Analysis of A Mini Linear Optical Pickup Actuator

  • Park, Joon-Hyuk;Baek, Yoon-Su;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1616-1627
    • /
    • 2003
  • This paper describes a mini linear optical pickup actuator. To reduce the size, inner yokes are designed to guide the mover and outer yokes of permanent magnets are removed. Magnetic circuit method is used to determine the thrust force. Virtual path method is proposed to analyze the open magnetic circuit analysis. The magnetic circuit of the proposed actuator can be a closed circuit due to the virtual path model of the outer magnetic flux. The validity of virtual path method is evaluated by comparing to the FEM analysis. Structural vibration is investigated using FEM and the design of the mover is modified to improve the vibration characteristic. Dynamic characteristic experiments shows that the performance of the proposed actuator is enough to be used as a coarse and fine seeking actuator simultaneously and the thrust force margin for loading a focusing actuator is guaranteed.

A Study on 3D Equivalent Magnetic Circuit Network Method Using Trapezoidal Element (사다리꼴 요소를 이용한 3차원 등가자기회로망 해석에 관한 연구)

  • Kim, Sol;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.449-456
    • /
    • 2002
  • 3D Equivalent magnetic Circuit Network Method (EMCNM) is comparatively the easy way that analyzes 3D models of Electric Machine by using permeance as a distributive magnetic circuit parameter under the existing magnetic equivalent circuit method and Numerical Method. The existing 3D EMCNM could not correctly describe the shape of an analysis target when using rectangular shape element or fan shape element, so it made errors when calculating permeance. Therefore, this paper proposes the trapezoidal element contained rectangular element, fan-shape element, and quadrilateral element to express a shape. The proposed method in this research was confirmed as a useful and an accurate method through comparing with the analysis result of SRM model that is sufficiently guaranteed by 2D-Analysis.

Modeling of Flux Leakage in a Magnetic Circuit with Permanent Magnet (영구자석을 포함한 자기회로에서의 누설 자속 모델링)

  • Kim, Seung-Jong;Kim, Woo-Yeon;Lee, Jong-Min;Bae, Yong-Chae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The magnetic circuit analysis excluding flux loss and fringing effect often gives a result with unignorable error, when compared with real system. But, it is not easy to make a complete magnetic circuit model with the loss effects. This paper introduces a relatively simple method to build the model including the flux loss and fringing effect, in which the paths of leaked flux are simplified in terms of circular arcs and straight lines. After modification of the model, the error of about 36 % in maximum between the magnetic circuit analysis and FEM analysis is reduced to about 7 %.

Analysis and Design of Integrated Magnetic Circuit for Phase Shift Full Bridge Converter (위상천이 풀-브릿지 컨버터를 위한 Integrated Magnetic 회로 설계 및 해석)

  • Jang, Eun-Sung;Li, Xin-Lan;Shin, Yong-Whan;Heo, Tae-Won;Kim, Don-Sik;Lee, Hyo-Bum;Shin, Hwi-Beom
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.406-409
    • /
    • 2008
  • This paper presents the integrated magnetic circuit designing method for phase shift full bridge(PSFB) converter. The integrated magnetic circuit is implemented on redesigned of EI core. The transformer windings are located on center leg and the two inductors are located on the outer legs with air gap. Based on the equivalent circuit model, the principle of operation of the PSFB converter is explained. The operation and performance of the proposed circuit are verified on a 1.2 kW prototype converter. The analysis and design of the integrated magnetic circuit is verified through the experimental and simulation results.

  • PDF

Analysis on the Levitation Force Characteristics of Longitudinal Flux Type Levitation Magnet using Equivalent Magnetic Circuit Model (등가자기회로 모델을 이용한 종자속형 자기부상 전자석의 부상력 특성 해석)

  • Cho, Han-Wook;Kim, Chang-Hyun;Lee, Jong-Min;Han, Hyung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2236-2245
    • /
    • 2011
  • This paper deals with the levitation force characteristics of electromagnet for MAGLEV vehicle application. The magnetic flux density distribution and levitation force characteristics of the electromagnet are investigated by means of equivalent magnetic circuit model. Firstly, we defined the aligned and unaligned electromagnet module for the full-electromagnet, and magnetic flux paths are represented for each model including leakage and fringing flux paths. Because of the analysis model contains both the permanent magnet and electromagnet coil, we calculated the airgap magnetic flux density and levitation forces using flux superposition in electromagnetic circuit. The results are validated extensively by comparison with finite element analysis. Moreover, the 1/4 scaled magnetic levitation and propulsion test vehicle has been manufactured and tested in order to verify these predictions. The experimental results confirms the validity of the analytical prediction with equivalent magnetic circuit model for the description of a electromagnet.