• Title/Summary/Keyword: Magnet Load Power Supply

Search Result 21, Processing Time 0.02 seconds

Charging and Persistent-Current Mode Operating Characteristics of BSCCO Magnet Using High-Tc Superconducting Power Supply (고온 초전도 전원장치를 이용한 BSCCO Magnet의 충전 및 영구전류 운전 특성)

  • Jo, Hyun-Chul;Yang, Seong-Eun;Kim, Young-Jae;Hwang, Young-Jin;Yoon, Yong-Soo;Chung, Yoon-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • This paper deals with charging and persistent-current mode operating characteristics of BSCCO magnet load using high-temperature superconducting (HTS) power supply. The HTS power supply consists of two heater-triggered switches, an iron-core transformer with the primary copper winding and the secondary BSCCO solenoid, and a BSCCO magnet load. The magnet load was fabricated by double pancake winding and its inductance is about 21 mH. A hall sensor was installed at the middle of the magnet load to measure the current in the load. In order to investigate the efficient pumping characteristics, operating tests of heater-triggered switch with respect to dc heater current were carried out, and the electromagnet current was determined by considering saturation characteristics of its iron core. The saturation characteristics of charged current in the magnet load were observed with respect to various pumping periods: 12 s, 14 s, 24 s and 32 s. After charging the magnet load, the persistent current was measured. The operating characteristics of the persistent current mode were mainly determined by joint resistance and magnet load.

Analysis of the Operational Characteristic of a High-Tc Superconducting Power Supply for Charging of the Superconducting Magnet (초전도자석 충전용 고온초전도전원장치의 특성해석)

  • Yun, Yong-Su;Kim, Ho-Min;An, Min-Cheol;Bae, Deok-Gwon;Go, Tae-Guk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.159-164
    • /
    • 2002
  • This paper presents the design and fabrication of a high-Tc superconducting (HTS) power supply for charging of the HTS magnet load, and its characteristics have been analyzed through experiments. HTS power supply consists of two heaters, an electromagnet, a Bi-2223 solenoid and a Bi-2223 pancake magnet load. In this experiment, 331 mH electromagnet and 0.8 A dc heater current were used, and 8.5 sec and 17 sec were used for pumping period. Mechanism of the superconducting switch is used for heater-trigger. In order to measure the pumping-current with respect to the magnet flux changes, hall sensor was installed at the center of the Bi-2223 pancake load. The experimental observations have been compared with the theoretical predictions. In this experiment, the pumping-current has reached about 1.2 A. In computer simulation, the maximum pumping-current of the system has been predicted to be about 2.7 A.

A Power Circuit Improvement of the Hybrid System Using Phase Controlled Rectifier and PWM Converter for Magnet Load Power Supply (자석-부하 전원장치를 위한 위상제어 정류기와 PWM 컨버터를 사용한 복합구조 시스템의 전력회로 개선)

  • Kang, Min-Gu;Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.231-235
    • /
    • 2008
  • Thyristor rectifiers are still the preferred choice for large magnet power supplies. However, large harmonic voltages, resulting in large current ripple, and slow dynamic response are major drawbacks of these converters. Joos presented a topology and a control technique for a hybrid large-power high-precision magnet power supply in 1996. The system consists of a phase controlled rectifier (PCR) connected in series with a high-frequency PWM converter. This paper improves the power circuit of the PWM converter using interphase transformer. Simulation result proves effect of the proposed system.

Characteristic Analysis and Experiments on Components of Low-Tc Power Supply (저온초전도전원장치의 시스템 특성해석 및 요소실험)

  • 윤용수;주민석;고태국
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.76-81
    • /
    • 2004
  • This paper deals with characteristic analysis and experiments on components of low-Tc(LTS) power supply. A LTS power supply consists of two exciters, a rotor, a stator, and an LTS magnet. The power supply has eight rotating poles, which make rotational magnetic flux. These flux penetrate superconducting sheets and cause currents which charge an LTS load. In this experiment, a 25.8mH LTS magnet was used, and rotor revolutions from 30 to 300rpm were used. In order to measure the pumping-current with respect to the magnet flux changes, a hall sensor was installed at the center of the LTS magnet. The experimental observations have been compared with the theoretical predictions. In this experiment, the pumping-current has reached about 372A.

A Study on High Precision and High Stability Digital Magnet Power Supply Using Second Order Delta-Sigma modulation (2차 델타 시그마 변조기법을 이용한 고 정밀 및 고 안정 디지털 전자석 전원 장치에 관한 연구)

  • Kim, Kum-Su;Jang, Kil-Jin;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.69-80
    • /
    • 2015
  • This paper is writing about developing magnet power supply. It is very important for power supply to obtain output current in high precision and high stability. As a switching noise and a power noise are the cause of disrupting the stability of output current, to remove these at the front end, low pass filter with 300Hz cutoff frequency is designed and placed. And also to minimize switching noise of the current into magnet and to stop abrupt fluctuations, output filter should be designed, when doing this, we design it by considering load has high value inductance. As power supply demands the stability of less than 5ppm, high precision 24bit(300nV/bit) analog digital converter is needed. As resolving power of 24bit(300nV/bit) analog digital converter is high, it is also very important to design the input stage of analog digital converter. To remove input noise, 4th order low pass filter is composed. Due to the limitation of clock, to minimize quantization error between 15bit DPWM and output of ADC having 24bit resolving power, ${\Sigma}-{\Delta}$ modulation is used and bit contracted DPWM is constituted. And before implementing, to maximize efficiency, simulink is used.

Development of Performance Analysis 80 kW High-efficiency Permanent Magnet Generator for Radar System Power Supply (레이더 체계 전원공급용 80 kW급 고효율 영구자석형 발전기 개발 및 성능분석)

  • Ryu, Ji-Ho;Cho, Chong-Hyeon;Chong, Min-Kil;Park, Sung-Jin;Kang, Kwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.60-71
    • /
    • 2019
  • Electrical power supply is needed to operate the radar system in the field. In addition, it should not cause performance deterioration under the environmental factors due to characteristics of military equipment, and should not cause malfunction due to electromagnetic waves generated in radar, and then should not cause malfunction in radar equipment. Therefore, By applying a permanent magnet to the rotor of the generator, light weighting and high efficiency of generator were achieved. As a result, electrical performance test of the generator, the rated output power was 80.8 kW, the maximum output power was 88.1 kW, and the output power efficiency was 98.1 % under the full load condition. When the load capacity of the generator was changed from no load to full load, the maximum voltage variation was 3.6 % and the frequency variation was 0.3 %. As a result of the transient response test for measuring the output power of the generator according to the load characteristics change, the maximum voltage variation of 7.9 %, frequency variation of 0.5 % were confirmed, and the transient response time was 2.1 seconds. Environmental tests were conducted in accordance with MIL-STD-810G and MIL-STD-461F to evaluate the operability of the generator groups. Normal operation of radar system generator group was confirmed under high temperature and low temperature environment conditions. Electromagnetic tests were conducted to check if electromagnetic wave generated from both radar system and generator group in operation caused any performance deterioration to each other. As a result, it was confirmed that the performance deterioration due to electromagnetic wave inflow, radiation, and conduction did not occur. It is expected that it should be possible to provide high efficiency power supply and stable power supply by applying to various military system as well as radar system.

Study of a Superconducting Switch and Superconducting Power Supply for the Charging of Superconducting Magnets (고온초전도자석 충전용 초전도 스위치 및 전원장치에 관한 연구)

  • 배덕권;안민철;김영식;김호민;이찬주;윤용수;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.318-321
    • /
    • 2002
  • Superconductivity has various applications in the whole industry such as the generation of high magnetic field for medical care and diagnosis, the lossless power transmission, environment-friendly vehicles and clean energy storage systems. This paper deals with the High-Tc superconducting(HTS) power supply using heater-triggered switch for the charging of the superconducting magnets. HTS superconducting power supply consists of two heaters, an electromagnet, and Bi-2223 solenoid and Bi-2223 pancake is used as a superconducting load, similar to real HTS magnet. The timing sequential control of two heaters and an electromagnet is an important factor to generate pumping- current in the Bi-2223 load. The thermal analysis of switching parts of the Bi-2223 solenoid according to the heater input was carried out. Based upon the analysis, the 0.8A of heater current were optimally derived. The maximum pumping current reached 1.7A.

  • PDF

OVERVIEW OF SUPERCONDUCTING MAGNET POWER SUPPLY SYSTEM FOR THE KSTAR 1ST PLASMA EXPERIMENT

  • Choi, Jae-Hoon;Yang, Hyung-Lyeol;Ahn, Hyun-Sik;Jang, Gye-Yong;Lee, Dong-Keun;Kim, Kuk-Hee;Hahn, Sang-Hee;Kim, Chang-Hwan;Hong, Jae-Sic;Chu, Yong;Kong, Jong-Dae;Hong, Seong-Lok;Hwang, In-Sung
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.459-466
    • /
    • 2008
  • The KSTAR Magnet Power Supply (MPS) was dedicated to the SC coil commissioning and $1^{st}$ plasma experiment as a part of the system commissioning. Although many efforts to develop large-current power supplies that are useful for high power electronic devices have been made in various application fields, such as for large metal-plating devices, there were clear discrepancies between conventional power supply technologies and that for the SC coils due to the special SC coil load conditions. Therefore, most of the power supply technologies for the SC coils were a challenge in the domestic research area due to their limited application. However, the MPS commissioning result showed that all of the hardware and controlling software operated well, and this result finally led to the success of SC coil commissioning and the KSTAR $1^{st}$ plasma experiment. This paper will describe key features of KSTAR MPS for the $1^{st}$ plasma experiment, and will also report the commissioning results of the magnet power supplies.

Digital DC power supply for light accelerator

  • Kim, Yoon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.1000-1003
    • /
    • 2014
  • There are 70 vertical and 70 horizontal correctors for Pohang Light Source. Until mid of 2000, power supplies for these correctors were based on 1990's technology, so the global orbit feedback system was not possible with poor 12 bit resolution. A new task force team was assembled to develop new power supplies with BESSY type DAC cards. After the project, two vertical correctors in each lattice were connected with new power supplies, and the global orbit feedback was available within the accuracy of 5 microns. However, this replacement was not enough to satisfy the beam stability requirement of 2 microns for PLS. We have launched another power supply design based on all digital technology. This attempt was completed within a year, and 80 units were assembled in house. Currently, the global orbit feedback system is running successfully with new digital power supplies and the compensation of chamber motion due to the thermal load by using digital displacement transducers attached on each BPMs.

Analysis of the Characteristics of Voltage and Charging Current of the superconducting Magnet using by a Low-Tc Superconducting Power Supply. (저온초전도전원장치를 이용한 초전도자석의 전압 및 충전전류 특성해석)

  • 정윤도;윤용수;김호민;김태중;이상진;고태국;한태수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.162-165
    • /
    • 2000
  • This paper deals with the operational characteristics of a low-Tc superconducting power supply. Its characteristics have been analyzed through experiments. In this study, 1.8 mH superconducting magnet load and 50A dc exciter current were used and maximum 300 rpm were used for the experiment. The experimental observations have been compared with the simulation results. Pumping rate proportinally increased due to rotor speed. This reason in according to magnetic saturation of the magnetic material.

  • PDF