• Title/Summary/Keyword: Magnet Hall Sensor

Search Result 80, Processing Time 0.026 seconds

Development of the Caliper System for a Geometry PIG Based on Magnetic Field Analysis

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo;Kho, Young-Tai;Park, Gwan-Soo;Park, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1835-1843
    • /
    • 2003
  • This paper introduces the development of the caliper system for a geometry PIG (Pipeline Inspection Gauge). The objective of the caliper system is to detect and measure dents, wrinkles, and ovalities affect the pipe structural integrity. The developed caliper system consists of a finger arm, an anisotropic permanent magnet, a back yoke, pins, pinholes and a linear hall effect sensor. The angle displacement of the finger arm is measured by the change of the magnetic field in sensing module. Therefore the sensitivity of the caliper system mainly depends on the magnitude of the magnetic field inside the sensing module. In this research, the ring shaped anisotropic permanent magnet and linear hall effect sensors were used to produce and measure the magnetic field. The structure of the permanent magnet, the back yoke and pinhole positions were optimized that the magnitude of the magnetic field range between a high of 0.1020 Tesla and a low of zero by using three dimensional nonlinear finite element methods. A simulator was fabricated to prove the effectiveness of the developed caliper system and the computational scheme using the finite element method. The experimental results show that the developed caliper system is quite efficient for the geometry PIG with good performance.

A Study on Contactless Identification of Impellers Using a Digital Hall Sensor (디지털 홀 센서를 이용한 비접촉 임펠러 식별에 대한 연구)

  • Lee, Ho-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.71-77
    • /
    • 2021
  • An impeller identification technique that is essential for adding viscosity measurement functions to overhead stirrers is presented in this study. Previous studies have revealed that using magnets facing the same poles arranged in a row can aid in distinguishing the types of impellers by detecting the number of magnets in a non-contact manner. However, as these previous studies measured the magnetic fields using analog Hall sensors, a converting circuit for the digital signals is required that can interface with the MCU. In this study, it was demonstrated that the number of magnets can be distinguished without using a separate conversion circuit by using a Hall sensor with a digital output. Owing to the unique hysteresis characteristics of digital Hall sensors, it was confirmed through experiments that the complex and diverse outputs appear depending on the direction of the magnetic field, the arrangement of magnetic poles, and the moving direction of the magnet. The measurement of the magnetic field showed that an edge signal equal to the number of magnets inserted into the impeller was detected when the radial direction was used, and the south pole was first approached.

Experimental Study on Position Control System Using Encoderless Magnetic Motion (엔코더리스 마그넷 모션을 이용한 위치제어에 대한 리니어모터 실험적 연구)

  • Kim, Hong-youn;Yun, Young-Min;Shim, Ho-Keun;Kwon, Young-Mok;Heo, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • A position control system composed of the PMLSM(Permanent Magnet Linear Synchronous Motor), unlike conventional linear permanent magnet synchronous motor is fixed to the permanent magnet moving coil rails (permanent magnet = stator, coil = mover), the coil is fixed, moving the permanent magnet, we propose a position control system (permanent magnet = mover, coil = stator) structure. Position is measured not using conventional encoder or resolver but by adopting vector control method using 2 hall sensors generating rectangular signal. This method estimate the velocity and position of mover by using the quadruple of two hall sensor signal instead of encoder signal. Vector control of PMLSM using 2 hall sensor generating rectangular wave is proved to control the system stable and efficiently through simulation. Also hardware experiment reveals that the position control performance is measured within the range of $30{\sim}50{\mu}m$ in the accuracy of $10{\sim}20{\mu}m$, which is improved twice to the conventional method. The proposed method exhibits its economical efficiency and practical usefulness. The vector control technique using two hall sensors can be installed in narrow place, accordingly it can be implemented on the system where the conventional encoder or resolver cannot operate.

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 Slotless PM BLDC 전동기의 속도제어)

  • Lee S. J.;Yoon Y. H.;Woo M. S.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.33-37
    • /
    • 2004
  • Slotless Permanent magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and high power density has been more widely used in industrial and automatic machine. Generally, PM BLDC meter is necessary that the three Hall-ICs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in this motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if only we used one Hall-IC, we estimate information of the others phase in sequence through a revolving rotor. This paper identified the characteristics and performance by using one Hall-IC for the 3 phase PM BLDC whose six stator and two rotor designed.

  • PDF

Position Error Compensation at the Sensorless Control of PMSM using Rectangular 2 Hall Sensors (구형파 2-Hall Sensor를 사용한 영구자석형 동기전동기의 센서리스 제어시의 위치오차 보상)

  • Kim, Kyung-Min;Lee, Jung-Hyo;Hwang, Chun-Hwan;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • Low costed position sensor or sensorless control method is generally used in the motor control for home appliance because of the material cost and manufacture standard restriction. In conventional sensorless method, the stator resistance and back-EMF coefficient are varied by the motor speed and load torque variation. Therefore, position error occurred when the motor is operated by sensorless control method because of these variations. In this paper, the compensation method is proposed for sensorless position error using 2 hall sensors.

Development of Position Sensor Detection Circuit using Hall Effect Sensor (Hall Effect Sensor를 이용한 위치센서 검출회로개발)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • BLDC motors are getting better performance due to the improvement of material technology including high performance of permanent magnets, advancement of driving IC technology with high integration and high functionality, and improvement of assembly technology such as high point ratio. While having the advantage of such a square wave driven BLDC motor, interest in the design and development of a square wave driven BLDC permanent magnet motor and development of a position detection circuit and driver is increasing in order to more meet the needs of users. However, in spite of the cost and functional advantages due to reduced efficiency, switching loss and vibration, noise, etc., the application is somewhat limited. Therefore, in this paper, we study a position detection circuit that generates a sinusoidal signal in proportion to the magnetic flux of a BLDC motor rotor using a Hall Effect Sensor that generates a sinusoidal wave to increase the efficiency of the motor, reduce ripple, and drive a sinusoidal current with excellent speed and torque characteristics.

Implementation of Super High-speed Permanent Magnet Synchronous Machine Drive (영구 자석 동기 전동기의 초고속 운전에 관한 연구)

  • Kim, Myoung-Ho;Yim, Jung-Sik;Sul, Seung-Ki;Lim, Sung-Il
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.329-335
    • /
    • 2008
  • Recently, super high-speed motor drives have been available due to the development of power electronics technology And they are used in various fields of industry because of their advantages. This paper describes the control algorithm for a permanent magnet synchronous motor(PMSM) drive at the speed of 118,000r/min using DSP and IGBT inverter. Hall sensors are implemented to measure the rotor position and speed, and a speed observer is used to reduce the performance deterioration caused by the low resolution of hall sensors. To enhance the output power capacity in the high-speed operating region, a flux weakening controller which also can work as an anti-wind up controller is used. Computer simulations and experiments are peformed to validate the proposed method.

Core-Tcchnology for MFL Inspection System (누설자속 측정 시스템 개발을 위한 요소기술)

  • Won, Sun-Ho;Jo, Gyeong-Sik
    • 연구논문집
    • /
    • s.30
    • /
    • pp.159-168
    • /
    • 2000
  • In this research, MFL inspection system has been studied for the inspection of storage tank floor. The reference specimens having 20%, 40%, 60% and 80% slot's are fabricated using the carbon steel plates of a 6mm and 10mm thick. Powerful permanent magnets and Hall effect sensors are used to this application. Also, this paper presents a newly developed MFL scanning system. Conclusively, it is shown that our system is able to detect metal loss like a slot.

  • PDF

Property of Wireless Clip-type Pulsimeter by Using a Hall Device and a Permanent Magnet (영구자석과 홀소자를 이용한 무선 집게형 맥진기 특성 연구)

  • Yoon, Woo-Sung;Ji, Jong-Ok;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.179-185
    • /
    • 2014
  • The existing USB connection type of the clip-type pulsmeter equipped with a Hall sensor and a permanent magnet does not have any error or malfunction to measure the pulse wave. The property of the wireless networking system communicating the pulse wave data through the wireless LAN communication by combination USB with Ethernet and Ethernet to Wi-Fi converting system instead of existing USB connection method was investigated. There are exited that the patient needs to stay at close site of the desktop PC without USB connector and the wireless transfer and receiver networking system has pulse wave measurement SW to receive the pulse wave data. Thus it is expected that the study becomes helpful to measure and transfer the exact pulse wave of the patient in a comfortable pose at close range.

Improvement of Initial Rotor Position Detection for Permanent-Magnet Synchronous Motor Using Magnetic Position Sensor (영구자석형 동기전동기에서 자기식 위치 센서를 사용한 초기 회전자 위치 검출 성능의 개선)

  • Park, Mun-Su;Yoon, Duck-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.398-404
    • /
    • 2021
  • This paper proposes a method of using a magnetic position sensor to detect accurately the rotor position required to perform vector control of a permanent-magnet synchronous motor, particularly the initial rotor position at startup. In the existing vector control systems, the initial rotor position was determined using the output signals of the Hall sensors, or the control was performed in a sensorless method without using such a sensor. On the other hand, the accuracy is degraded due to the occurrence of a position detection error, and the practicality was not satisfactory. This paper attempts to detect the initial rotor position using a magnetic position sensor to solve this problem. This method is used to solve the deteriorating starting characteristics of the motor in the vector control system. In addition, to lower the price of a low-power vector control inverter, this paper proposes a method of integrating the existing sensors and reducing the price to less than half using a magnetic position sensor for speed and position detection.