• Title/Summary/Keyword: Magma mixing

Search Result 31, Processing Time 0.024 seconds

Petrography of the Miocene Volcanic Rocks of the Eoil Basin, Southeastern Part of Korean Peninsula (한반도 남동부 어일분지의 마이오세 화산암의 암석기재적 연구)

  • 이정현;윤성효;고정선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.64-80
    • /
    • 2004
  • The Miocene volcanic rocks in the Eoil Basin, which is one of the pull-apart basins in the southeastern Korean Peninsula, are bimodal in composition: felsic (67.2-70.5wt.% SiO$_2$) and mafic(49.3-55.2wt.% SiO$_2$). The bimodal volcanic activities in the basin appear to be closely associated with the basin development. The volcanic rocks are intercalated with thick Files of sedimentary sequence. They show evidence of magma mixing. which has produced mafic and felsic volcanic rocks. We are able to identify the petrographic characteristics (disequilibrium phenocryst assemblages) of the volcanic rocks that were mixed. In basaltic lava, phenocrysts of olivine and orthopyroxene coexist with corroded quartz phenocryst. Dacitic to rhyolitic welded ash-flow tuff contains phenocrysts of clinopyroxene and orthopyroxene. It suggests that phenocryst disequilibrium have been affected and mixed by magmas, which have different compositions.

Sulfur Isotope Study on the Wolf River Batholith, Wisconsin in U.S.A. (미국 위스콘신주의 올프리버 저반에 대한 황동위원소 연구)

  • Sun-Joon Kim;Yuch-Ning Shieh
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.134-143
    • /
    • 1995
  • Sulfur isotope compositions have been determined for the granitic and related rocks from the Wolf River Batholith, Wisconsin in U.S.A. Sulfur content and isotope composition of granitic rocks of the Wolf River Ratholith range from 30 to 140 ppm and from 1.1 to 6.5 permil respectively, and are considered to be magmatic. Sulfur content and isotope composition of the Penokean plutonic rocks, surrounding country rocks, range from 31to 381 ppm and from -1.7 to 7.2 permil respectively. The positive correlation observed between sulfur and oxygen isotope data of granitic rocks and the Penokean plutonic rocks may be due to the assimilation of the Penokean plutonic rocks by a primary magma of deep-crustal origin, or to mixing at depth, of a primary magma with another magma having higher ${\delta}^{18}O$ and ${\delta}^{34}S$.

  • PDF

Petrological Characteristics of Alkali Rhyolite in the Cheonmunbong of the Mt. Baekdu (백두산 천문봉 일대 알칼리유문암의 암석학적 특징)

  • Kim, Jungsu;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.183-200
    • /
    • 2017
  • Alkali rhyolites in the Cheonmunbong of the Mt. Baekdu stratovolcano show porphyritic texture in the glassy or aphanic groundmass. Major phenocryst is alkali-feldspar, pyroxene, and amphibole, and small amount of microphenocryst is olivine, quartz, opaque mineral (ilmenite). The content of $Fe^{2+}/(Fe^{2+}+Mg^{2+})$ and alkali elements in the mafic minerals is high. Alkali feldspar is classified as sanidine or anorthclase, olivine as fayalite, and pyroxene as ferro-hedenbergite of ferro-augite area. Amphibole belongs to alkali amphibole group, but FeO and $Fe_2O_3$ were not separated, so it is required future studies. Nb(-) anomaly suggesting that slab-derived materials might have played a primary role in the genesis of the rhyolite magma, is not observed. It is noted that they originated in the within plate environment which is not related to subduction zone of the convergent plate boundary. The Mt. Baekdu alkaline rocks are classified into the comendite series. The alkali rhyolites of the summit at Mt. Baekdu shows the disequilibrium mineral assemblages, suggesting that it evolved from thrachytic magma with experience of magma mixing as well as fractional crystallization.

Antirapakivi Mantled Feldspar of the Albong Trachyandesite from Ulleung Island, Korea (울릉도 알봉조면안산암에서 산출되는 안티라파키비조직 장석의 성분)

  • Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.737-748
    • /
    • 2022
  • In this study, the composition of feldspar phenocrysts observed in the Ulleungdo Albong trachyandesite lava dome was identified by performing point and X-ray element mapping surface analysis (EPMA). Plagioclase, which appears as a phenocryst in the Albong trachyandesite, corresponds to bytownite and labradorite, and andesine, and lath in the microphenocrysts and the matrix corresponds to andesine to oligoclase. Alkali feldspar mantled around plagioclase phenocrysts and microphenocrysts correspond to anorthoclase and sanidine. Plagioclase phenocrysts with a distinct zonal structure represent a normal structure in which the An content of the zoning decreases from bytownite to labradorite or andesine as it moves from the center of the phenocrysts to the edge. The edge of the phenocryst is surrounded by alkali feldspar, showing an antirapakivi texture. X-ray mapping of feldspar phenocrysts showed a typical antirapakivi texture. Normal zoning with distinct zoning showing a difference in component composition was clearly shown. The edges were mantled with alkali feldspar, and antirapakivi represents the texture. The antirapakivi texture of feldspar in the Albong trachyandesite may have been formed in the mixing system when alkali feldspar crystallized and mantled around plagioclase phenocrysts and microphenocrysts. This is because plagioclase phenocrysts and microphenocrysts in magma that had already crystallized are more mafic than trachyandesite magma.

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.

Sr, Nd and Pb isotopic investigations of ultramafic xenoliths and their host basalts from Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea: Implications for a large-scale difference in the source mantle beneath East Asia

  • Park, Seong-Hee;Kwon, Sung-Tack;Hee Sagong;Cheong, Chang-Sik
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.75-75
    • /
    • 2001
  • We report Sr, Nd and Pb isotope data of clinopyroxene separates from ultramafic xenoliths and their host basaltic rocks in Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea. The isotopic data of the xenoliths and host basalts are distinctly different from those of Korean basement rocks. Except for two xenoliths from Ganseong, all samples in this study have isotopic ratios within the combined range of MORB-OIB data. All basaltic rocks have Nd-Sr-Pb isotope compositions different from those of xenoliths, indicating that the host basaltic magma did not derive from the lithospheric mantle where the xenoliths originated. The range of isotopic composition of xenoliths is much greater than that observed in host basalts, which reflects small-scale heterogeneity of the lithospheric mantle. The greater isotopic heterogeneity of the lithospheric mantle probably reflects its long-term stability. The spinel peridotite xenolith data of Jeju Island, Baekryeong Island and Boeun display mixing hyperbolas between DMM and EM II end members. Since Jeju basalts have EM II-like isotopic signature, the mixing relationship shown by the isotopic data of the Jeju xenoliths can be interpreted as the result of infiltration of metasomatic fluid or melt derived from basaltic magma into DMM-like lithospheric mantle. In contrast to other xenolith sites, the Ganseong xenoliths are dominantly clinopyroxene megacryst and pyroxenite. Clinopyroxene megacrysts have different isotopic ratios from their host basalt, reflecting its exotic origin. Two Ganseong xenoliths (wherlite and clinopyroxenite) have much enriched Sr and Nd isotopic ratios and Nd model ages of 2.5-2.9 Ga, and plot in an array away from the MORB-OIB field. The mantle xenoliths from Korean Peninsula have similar $\^$87/Sr/$\^$86/Sr,$\^$143/Nd/$\^$144/Nd and $\^$207/Pb/$\^$204/Pb ratios to, but higher $\^$208/Pb/$\^$204/Pb ratios than, those from eastern China, indicating that Korean xenoliths are derived from the lithospheric mantle with higher Th/U ratio compared with Chinese ones. The isotopic data of xenolith-bearing basalts of Baekryeong Island and Ganseong, along with Ulreung and Dok Islands, show a mixing trend betlveen DMM and EM I in Sr-Nd-Pb isotopic correlation diagrams, which is also observed in tile northeastern Chinese basalts. However, the Jeju volcanic rocks show an EM II signature that is observed in southeastern Chinese basalts. The isotopic variations in volcanic rocks from the northern and southern portions of the East Asia reflect a large-scale isotopic heterogeneity in their source mantle.

  • PDF

Geochemistry of the Daebo Granitic Batholith in the Central Ogcheon Belt, Korea : A Preliminary Report (중부 옥천대에 분포하는 대보 화강암질 저반의 화학조성 : 예비보고서)

  • Cheong, Chang-Sik;Chang, Ho-Wan
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.483-493
    • /
    • 1996
  • The tectonic environment and source characteristics of the Daebo granitic batholith in the central Ogcheon Belt were investigated based upon major and trace element geochemistry. The batholith is comprised of three granite types; a biotite granite (DBBG), K-feldspar megacryst-bearing biotite granite (DBKG), and a more mafic granodiorite (DBGD). The variations of Na and K in the granites can not be explained by simple fractional crystallization from the same primary magma. The irregular behavior of these alkali elements indicates a variety of source materials or incomplete mixing of different source materials. The large ion lithophile (LIL) element enrichment and low Ta/Hf ratios of the granites are typical characteristics of normal, calc-alkaline continental arc granitoids. Based upon REE patterns of the granites, it seems to be unreasonable to regard the felsic DBBG as a late stage differentiate formed by residual melts after the fractionation of major constituent minerals of the more mafic DBGD. Inconsistent variations in ${\varepsilon}_{Nd}(t)$ and LIL element concentrations of the granites preclude a mixing model between primitive melt and LIL element-enriched upper crustal materials. The irregular geochemical variation of the granites is taken to be largely inherited from an already heterogeneous source region.

  • PDF

K-Ar Age and Geochemistry of Hydrothermal Alteration in the Barton Peninsula, King George Island, Antarctica (남극 킹조지섬 바톤반도의 열수변질작용에 관한 K-Ar 연대와 지구화학)

  • Hur, Soon-Do;Lee, Jong-Ik;Hwang, Jeong;Choe, Moon-Young
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.11-21
    • /
    • 2001
  • K-Ar ages of the altered rocks from the Barton Peninsula are belows; altered tuffaceous andesite from southwestern part is 42 Ma, altered rocks contacted with quartz vein from southern part are 28 and 33 Ma, and advanced argillic altered andesite from northeastern part are 33 and 35 Ma. Those K-Ar ages are 10 My younger than granitic rocks of the Barton Peninsula. Hydothermal alteration of the Barton Peninsula was originated from mixing of magmatic water from parent magma of granitic rocks with meteoric water. The Al content in the hostrock is relatively constant during hydrothermal alteration, on the contrary the Mg content is in proportion to total alkali. The variation of total alkali and Mg contents in hydrothermal alteration indicates that those elements was washed out during hydrothermal alteration. The sequences of hydrothermal alteration of the Barton Peninsula is chloritization of amphiboles, sericitization of feldspars and kaolitization of sericite.

  • PDF

Plagioclase Composition of Feldspar Trachybasalt in Jeju Island (제주도 장석 조면현무암의 장석 성분에 대한 연구)

  • Yea, Nam Hee;Yun, Sung-Hyo;Koh, Jeong Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.309-333
    • /
    • 2012
  • Basalt having lots of feldspar phenocryst occurred at the northern and southern slope of the Mt. Halla, Jejudo. Among them, the Sioreum trachybasalt in southern slope consists of abundant phenocrysts of plagioclase in aphanitic groundmass. And the number of plagioclase grains are about 20 per $10cm^2$, and based on 667 grains the sizes are 13~0.7 mm (average 4.23 mm) in length and 8.6~0.5 mm (average 2.3 mm) in width. In according to modal analyses, Sioreum basaltic rock consists mainly of plagioclase (16~28%), olivine, clinopyroxene (1.5~6%) and opaque minerals (~0.1%) of magnetite and ilmenite as phenocryst and microphenocryst and groundmass (60~82%). The compositions of plagioclase, olivine and clinopyroxene are bytownite~andesine, chrysolite~hyalosiderite, augite respectively. Plagioclase phenocrysts show different type of zoning, namely, normal, reversal, patchy, oscillatory type. The An contents of zoned plagioclase mainly increase from core to rim. Those of oscillatory type from core to rim show variations of increase following decrease or decrease following increase, being more enriched in rim or almost same to core. Under the microscope, some plagioclase phenocrysts are especially melted in core part or marginal part, or found as only the remnant remain which resulted from reaction with melt. Some clinopyroxene are also corroded in margin part or found as irregular shape resulted from melting. The characteristics of petrography and compositional variation from core to rim of plagioclase and clinopyroxene, indicate that they are disequilibrium with melt and has been undergone geological environmental changes in magma batch during crystallization including magma mixing with replenishment of more mafic and high temperature melt.

The Overview of Layered structures in Mafic - Ultramafic Macheon Intrusion (고철질-초고철질 마천관입암의 층상구조 개관)

  • Song, Yong-Sun;Kim, Dong-Yeon;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.162-179
    • /
    • 2007
  • Macheon Layered Intrusion (MLI) which intruded into Precambrian gneiss complex of the northern Jirisan area, southeastern part of Youngnam (or Sobaeksan) Massif, is a layered mafic-ultramafic complex of Triassic age (ca. 223 Ma). The MLI is divided into Layered Series and Laminated Series. Layered Series is subdivided into Central Zone (Lower Zone) consisting of olivine gabbros and Peripheral Zone (Middle or Upper Zone) consisting of hornblende gabbros based on the type of cumulus texture and the main mafic phase. The Central Zone of Layered Series comprises thinly laminated olivine gabbros and uniform or thickly laminated coarse olivine gabbros which consist of mela-gabbro, troctolite, leuco-troctolite, and anorthositic rocks. Laminated Series is also subdivided into quartz-bearing biotite-pyroxene gabbros and homblende diorite and both have variable amount of interstitial quartz and microcline. Laminated series display moderately to slightly developed igneous lamination which is defined by the planar alignment of lath-shape plagioclases. Chilled margin of quartz-bearing biotite-pyroxene gabbro with surrounding Precambrian gneisses insists shallower intrusion of more felsic cognate magma evolved in the deep a little later. Rocks of Layered Series have orthocumulus to adcumulus olivine, adcumulus to intercumulus plagioclase, and intercumulus to heteradcumulus pyroxene and hornblende. Magmatic modally grading, folding, and cross-lamination are not rarely occurred in thinly layered rocks. These textural characteristics define main mechanisms of the formation of layered and laminated structure in mafic-ultramafic rocks of Macheon Layered Intrusion are gravity settling and in-situ crystallization associated with slumping and density current.