• 제목/요약/키워드: Macroscopic voids

검색결과 4건 처리시간 0.029초

Damage evolution of red-bed soft rock: Progressive change from meso-texture to macro-deformation

  • Guangjun Cui;Cuiying Zhou;Zhen Liu;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.121-130
    • /
    • 2024
  • Many foundation projects are built on red-bed soft rocks, and the damage evolution of this kind of rocks affects the safety of these projects. At present, there is insufficient research on the damage evolution of red-bed soft rocks, especially the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation. Therefore, based on the dual-porosity characteristics of pores and fissures in soft rock, we adopted a cellular automata model to simulate the propagation of these voids in soft rocks under an external load. Further, we established a macro-mesoscopic damage model of red-bed soft rocks, and its reliability was verified by tests. The results indicate that the relationship between the number and voids size conformed to a quartic polynomial, whereas the relationship between the damage variable and damage porosity conformed to a logistic curve. The damage porosity was affected by dual-porosity parameters such as the fractal dimension of pores and fissures. We verified the reliability of the model by comparing the test results with an established damage model. Our research results described the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation and provided a theoretical basis for the damage evolution of these rocks.

VARTM 공정에서의 금형 충전 및 기공 형성에 관한 3차원 수치해석 (Three-Dimensional Numerical Simulation of Mold-Filing and Void Formation During Vacuum-Assisted Resin Transfer Molding)

  • 강문구;배준호;이우일
    • Composites Research
    • /
    • 제17권3호
    • /
    • pp.1-7
    • /
    • 2004
  • 최근 대형 복합재료 구조물 성형에 적합한 공정으로 주목받는 vacuum assisted RTM (VARTM) 공정에 있어, 보강섬유의 조직 내부에 잔류하는 공기를 제거하여 기공함유율을 낮추는 기술의 중요성이 인식되고 있다. 거대기공 혹은 불완전 함침영역은 부적절한 주입구 및 공기배출구의 위치, 혹은 금형의 형상에 의해 발생한다. 미세기공은 불균일한 수지 유동선단의 속도로 인해 유동선단 부분에서 집중적으로 형성되며, 금형충전 공정 도중 수지와 함께 이동한다. 성형이 완료된 제품내의 잔류 기공들은 완성품의 물리적 성질을 저하 및 제품의 파손을 초래할 수 있다. 본 연구에서는 VARTM 공정에서의 기공의 형성 및 이동을 해석할 수 있는 통합된 거시적/미시적 해석 방법을 개발하였다. 수치해석 프로그램을 개발하여 VARTM 공정에서의 3차원 수지 유동을 해석하였으며, 그에 따른 거대기공 및 미세기공의 분포를 예측하였다.

소성 비대칭성을 갖는 HCP 소재의 국부변형 및 네킹해석 (Localized Necking in a Round Tensile Bar for a HCP Material Considering Tension-compression Asymmetry in Plastic Flow)

  • 윤종헌;이정환
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.285-290
    • /
    • 2012
  • In spite of progress in predicting ductile failure, the development of a macroscopic yield criterion to describe damage evolution in HCP (hexagonal close-packed) materials remains a challenge. HCP materials display strength differential effects (i.e., different behavior in tension versus compression) in their plastic response due to twinning. Cazacu and Stewart(2009) developed an analytical yield criterion for porous material containing randomly distributed spherical voids in an isotropic, incompressible matrix that shows tension-compression asymmetry. The goal of the calculations in this paper is to investigate the effect of the tension-compression asymmetry on necking induced by void nucleation, evolution and consolidation. In order to investigate the effect of the tension-compression asymmetry of the matrix on necking and fracture initiation, three isotropic materials A, B, and C were examined with different ratios of tension-compression asymmetry. The various types of material had BCC, FCC, and HCP crystal structures, respectively. The ratio between tension and compression in plastic flow significantly influences the fracture shape produced by damage propagation as well as affecting the localized neck.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.