• Title/Summary/Keyword: Macrophage differentiation

Search Result 142, Processing Time 0.024 seconds

Cytoskeleton Reorganization and Cytokine Production of Macrophages by Bifidobacterial Cells and Cell-Free Extracts

  • Lee, Myung-Ja;Zang, Zhen-Ling;Choi, Eui-Yul;Shin, Hyun-Kyung;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.398-405
    • /
    • 2002
  • Bifidobacteria have been previously shown to stimulate the immune functions and cytokine production in macrophages and T-lymphocytes. Accordingly, the RAW 264.7 murine macrophage cell line was used to assess the effects of Bifidobacterium on the proliferation and cytoskeleton reorganization of the cells. Cytokine production after exposure to Bifidobacterium was also monitored in both whole cells and cell-free extracts. When RAW 264.7 cells were cultured for 24 h in the presence of heat-killed Bifidobacterium bifidum BGN4, the proliferation of macrophages was slowed down in a dose-dependent manner and cell differentiation was observed by staining with the actin-specific fluorescent dye, rhodamin-conjugated phalloidin. Although EL-4 cells, a T-cell line, stimulated RAW 264.7 cells to produce TNF-${\alpha}$ and IL-6, the stimulatory activity of B. bifidum BGN4 decreased as the EL-4 cell number increased. When disrupted and fractionated BGN4 was used, the whole cell fraction was more effective than the other fractions for the TNF-${\alpha}$ production. In contrast, the cell-free extract exhibited the highest IL-6 production level among the fractions, which was evident even at a $1{\mu}g/ml$ concentration. The current results demonstrate that Bifidobacterium induced differentiation of the macrophages from the fast proliferative stage and that the cytokine production was differentially induced by the whole cells and cell-free extracts. The in vitro approaches employed herein are expected to be useful in further characterization of the effects of bifidobacteria with regards to gastrointestinal and systemic immunity.

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran;Kim, Min-Seuk;Jo, Hae;Byun, Hae-Mi;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

3-Hydrogenkwadaphnin Induces Monocytic Differentiation and Enhances Retinoic Acid-mediated Granulocytic Differentiation in NB4 Cell Line

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Lotfi, Abbas
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.722-729
    • /
    • 2006
  • Recently, we have reported that 3-hydrogenkwadaphnin (3-HK), a diterpene ester isolated from Dendrostellera lessertii (Thymealeaceae), is very effective against leukemia cell lines without any detectable effects on normal cells (Moosavi et al., 2005b). In this study, we report that 3-HK induces $G_1$ cell-cycle arrest, differentiation and apoptosis in APL NB4 cell line. Indeed, the drug between 24 to 96 h induced 7-65% growth inhibition of NB4 cells. Cell viability was also decreased by 2-55% between 24 to 96 h treatments with the drug, respectively. These effects of the drug were also dose-dependent. According to flow cytomtry results, 3-HK (15 nM) induced a significant G1-arrest up to 24 h which was consequently followed with appearance of sub-$G_1$ peak at 72 to 96 h. Hoechst 33258 staining and DNA fragmentation assays confirmed the occurrence of apoptosis among the treated cells. On the other hand, NBT reducing assay, Wright-Giemsa staining, phagocytic activity and expression of cell surface markers (CD11b and CD14) confirmed that the inhibition of proliferation is associated with differentiation especially toward macrophage-like morphology. Interestingly, 3-HK at 5 and 10 nM enhanced the effects of all-trans retinoic acid (ATRA) in NB4 cells. Based on these results, 3-HK might become an ideal candidate for treatment of APL patients pending full exploration of its biological functions.

Label-free Noninvasive Characterization of Osteoclast Differentiation Using Raman Spectroscopy Coupled with Multivariate Analysis

  • Jung, Gyeong Bok;Kang, In Soon;Lee, Young Ju;Kim, Dohyun;Park, Hun-Kuk;Lee, Gi-Ja;Kim, Chaekyun
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.412-420
    • /
    • 2017
  • Multinucleated bone resorptive osteoclasts differentiate from bone marrow-derived monocyte/macrophage precursor cells. During osteoclast differentiation, mononuclear pre-osteoclasts change their morphology and biochemical characteristics. In this study, Raman spectroscopy with multivariate techniques such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were used to extract biochemical information related to various cellular events during osteoclastogenesis. This technique allowed for label-free and noninvasive monitoring of differentiating cells, and clearly discriminated four different time points during osteoclast differentiation. The Raman band intensity showed significant time-dependent changes that increased up to day 4. The results of Raman spectroscopy agreed with results from atomic force microscopy (AFM) and tartrate-resistant acid phosphatase (TRAP) staining, a conventional biological assay. Under AFM, normal spindle-like mononuclear pre-osteoclasts became round and smaller at day 2 after treatment with a receptor activator of nuclear $factor-{\kappa}B$ ligand and they formed multinucleated giant cells at day 4. Thus, Raman spectroscopy, in combination with PCA-LDA, may be useful for noninvasive label-free quality assessment of cell status during osteoclast differentiation, enabling more efficient optimization of the bioprocesses.

Inhibitory Effects of Achyranthis Radix Extract Mixed with Hydrogel on Osteoclast Differentiation (하이드로젤에 탑재한 우슬(牛膝)추출물의 효과적인 파골세포 분화 억제 작용)

  • Choi, Jin-Young;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Jin-Moo
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: This study was conducted to evaluate the inhibitory effect of Achyranthis Radix extract(ARE) loaded hydrogel on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of ARE, Achyranthis Radix-alginate hydrogel disk(ARHD) in bone marrow macrophages stimulated(BMMs) with human receptor activator of nuclear factor-${\kappa}B$ ligand(RANKL), human macrophage-colony stimulating factor(M-CSF). Tartrate resistant acid phosphatase staining and RT-PCR were performed to know the inhibitory effect on osteoclast differentiation. Reactive oxygen species and actin ring formation were analysed to observe the effect of ARHD. Results: ARE has no cytotoxicity at the concentration of 0.1 $mg/m{\ell}$ or lower. ARE decreased the number of TRAP positive cells in RANKL, M-CSF stimulated BMMs and the gene expression. ARHD has no cytotoxicity at the concentration of 10 ${\mu}g/m{\ell}$ (24, 48hours), 50 ${\mu}g/m{\ell}$ (24 hours). ARHD restrained the synthesis of reactive oxygen species and the formation of actin ring. Conclusions: Achyranthis Radix has the inhibitory effect of osteoclast differentiation and bone resorption. Further studies are needed to treat osteoporosis by Achyranthis Radix.

Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption

  • Jang, Jin Sun;Kang, In Soon;Cha, Young-Nam;Lee, Zang Hee;Dinauer, Mary C;Kim, Young-June;Kim, Chaekyun
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.659-664
    • /
    • 2019
  • Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient ($Vav1^{-/-}$) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of $Vav1^{-/-}$ mice than in WT mice. Furthermore, the bone status of $Vav1^{-/-}$ mice was analyzed in situ and the femurs of $Vav1^{-/-}$ mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an ${\alpha}_v{\beta}_3$ integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption.

miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates

  • Li, Jie;Li, You;Wang, Shengjie;Che, Hui;Wu, Jun;Ren, Yongxin
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.572-576
    • /
    • 2019
  • Bisphosphonates are the mainstay of therapy worldwide for osteoporosis. However, bisphosphonates also have limitations. The objective of this study was to determine the role of miR-101-3p/Rap1b signal pathway in osteoclast differentiation after treatment with bisphosphonates. Our results revealed that miR-101-3p was an important regulator in bisphosphonates treated-osteoclasts. When miR-101-3p was down-regulated in bone marrow-derived macrophage-like cells (BMMs), the development of mature osteoclasts was promoted, and vice versa. However, alendronate decreased multinucleated cell number regardless of whether miR-101-3p was knocked down or over-expressed. TRAP activity assay confirmed the above results. Luciferase assay indicated that miR-101-3p was a negative regulator of Rap1b. Western blot analysis revealed that protein expression level of Rap1b in BMMs transfected with OV-miR-101-3p was lower than that in BMMs transfected with an empty vector. Rap1b overexpression increased TRAP-positive multinucleated cells, while Rap1b inhibition decreased the cell numbers. In vivo data showed that miR-101-3p inhibited osteoclast differentiation in ovariectomized mice while overexpressed of Rap1b blocked the differentiation. Taken together, our data demonstrate that miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates.

Inhibitory Effects of Lyophilized Dropwort Vinegar Powder on Adipocyte Differentiation and Inflammation (미나리 발효 식초의 지방세포 분화억제 및 항염증 효과)

  • Park, Yun-Hee;Choi, Jun-Hyeok;Whang, Key;Lee, Syng-Ook;Yang, Seun-Ah;Yu, Mi Hee
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.476-484
    • /
    • 2014
  • Obesity, which is characterized by a state of mild chronic inflammation, is known to cause metabolic diseases. This study was carried out to investigate the effect of lyophilized dropwort vinegar powder (DVP) on adipocyte differentiation and inflammation in T3-L1 preadipocyte and RAW 264.7 macrophage cell lines. DVP inhibited the differentiation of 3T3-L1 preadipocytes induced by a mixture of IBMX, dexamethasone, and insulin (MDI). Western blot analysis of cell lysates showed that DVP decreased the levels of two major transcription factors involved in adipogenesis, peroxisome proliferator- activated receptor-${\gamma}$ (PPAR-${\gamma}$) and CCAAT-enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$). DVP also significantly suppressed lipopolysaccharide (LPS)-induced production of nitric oxide (NO), and this was accompanied by a decrease in inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression. These results demonstrate that DVP inhibits MDI-induced adipocyte differentiation of 3T3-L1 cells and LPS-induced inflammation in RAW 264.7 macrophage cells. The findings indicate that this natural product may be a good candidate as to prevent metabolic diseases.

Evaluation of Immune Enhancing Activity of Luthione, a Reduced Glutathione, in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 환원형 glutathione인 luthione의 면역 증강 활성 평가)

  • Seon Yeong Ji;Da Hye Kwon;Hye Jin Hwang;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.397-405
    • /
    • 2023
  • Although glutathione (GSH) has been shown to play an important role in the prevention of oxidative damage as an antioxidant, studies on immune regulation by it have not been properly conducted. In this study, we investigated whether luthione®, a reduced GSH, has an immune enhancing effect in murine macrophage RAW 264.7 cells. The results of flow cytometry and immunofluorescence experiments indicated that luthione increased phagocytic activity, a representative function of macrophages, compared to the control cells. According to the results of the cytokine array, the expression of interleukin (IL)-5, IL-1β, and IL-27 was significantly increased in the luthione-treated cells. Luthione also enhanced the production of tumor necrosis factor-α and IL-1β through increased expression of their proteins, and increased release of the immune mediators such as nitric oxide (NO) and prostaglandin E2 was associated with increased expression of inducible NO synthase and cyclooxygenase-2. In addition, the expression of cluster of differentiation 86, an M1 macrophage marker, was dramatically enhanced in RAW 264.7 cells treated with luthione. Furthermore, as a result of heat map analysis, we found that cytokine signaling 1/3-mediated signal transducer and activator of transcription/Janus tyrosine kinase signaling pathway was involved in the immunomodulatory effect by luthione. In conclusion, our data suggested that luthione could act as a molecular regulator in M1 macrophage polarization and enhance immune capacity by promoting macrophage phagocytic function.

The Study on Anti-Metastasis and Immune Activation of Carthami Semen Herbal Acupuncture (홍화자약침(紅花子藥鍼)의 암전이 억제와 면역 활성화에 관한 연구)

  • Park, Ki-Chul;Park, Hee-Soo
    • Journal of Acupuncture Research
    • /
    • v.23 no.6
    • /
    • pp.45-60
    • /
    • 2006
  • Objectives : This study was guided to estimate inhibitory effects against hepatic metastasis and activation of immunocytes by Carthami Semen Herbal Acupuncture. Methods : Colon26-L5 carcinoma cells were injected through hepatic portal vein to induce hepatic metastatic cancer. Changes in weight, morphology of the cancer were estimated and cytokine level was analyzed to produce immunological changes. Results: The experimental group was significantly decreased metastatic size and proliferation compared with the control group. Observing immunocytes from the spleen of experimental group T-lymphocytes were significantly increased. As compared with control group, the differentiation of total T cell, helper T cell, cytotoxic T cell, Macrophage and NK cell was increased. Measuring the level of cytokine $IFN-{\gamma}$ which stimulates Th 1 was significantly increased in splenocyte with Con A stimuli. $IFN-{\gamma}$ and IL-12 were significantly increased in peritoneal exudate macrophage with LPS stimuli. Conclusion : These findings strongly indicate Carthami Semen Herbal Acupuncture improves immunity to inhibit the growth of cancer and metastasis.

  • PDF