• Title/Summary/Keyword: Macrophage colony-stimulating factor

Search Result 183, Processing Time 0.026 seconds

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

The Expression of Galectin-3, a Beta-Galactoside Binding Protein, in Dendritic Cells

  • Kim, Mi-Hyoung;Joo, Hong-Gu
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.105-109
    • /
    • 2005
  • Background: Dendritic cells (DCs) are the most potent APCs (antigen-presenting cells) and playa critical role in immune responses. Galectin-3 is a biological lectin with a beta-galactoside binding affinity. Recently, proteomic analysis revealed the presence of galectin-3 in the exosome of mature DCs. However, the expression and function of galectin-3 in DCs remains unclear yet. Methods: We used bone marrow-derived DCs of mouse and showed the expression of galectin-3 in DCs by using flow cytometry analysis and Western blot analysis. Results: Galectin-3 was determined as single band of 35 kDa in Western blot analysis. Flow cytometry analysis showed the major growth factor for DCs, granulocyte-macrophage colony stimulating factor (GM-CSF) and maturing agents, anti-CD40 monoclonal antibody (mAb) and lipopolysaccharide (LPS) consistently increased the intracellular expression of galectin-3 in DCs compared to medium alone. In addition, DCs treated with maturing agents did marginally express galectin-3 on their surface. Conclusion: This study suggests that galectin-3 in DCs may be regulated by critical factors for DC function.

Development and Functions of Alveolar Macrophages

  • Woo, Yeon Duk;Jeong, Dongjin;Chung, Doo Hyun
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.292-300
    • /
    • 2021
  • Macrophages residing in various tissue types are unique in terms of their anatomical locations, ontogenies, developmental pathways, gene expression patterns, and immunological functions. Alveolar macrophages (AMs) reside in the alveolar lumen of the lungs and serve as the first line of defense for the respiratory tract. The immunological functions of AMs are implicated in the pathogenesis of various pulmonary diseases such as allergic asthma, chronic obstructive pulmonary disorder (COPD), pulmonary alveolar proteinosis (PAP), viral infection, and bacterial infection. Thus, the molecular mechanisms driving the development and function of AMs have been extensively investigated. In this review article, we discuss the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-β in AM development, and provide an overview of the anti-inflammatory and pro-inflammatory functions of AMs in various contexts. Notably, we examine the relationships between the metabolic status of AMs and their development processes and functions. We hope that this review will provide new information and insight into AM development and function.

Peanut sprout tea extract inhibits lung metastasis of 4T1 murine mammary carcinoma cells by suppressing the crosstalk between cancer cells and macrophages in BALB/c mice

  • Jae In Jung;Hyun Sook Lee;Jaehak Lee;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.917-933
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: As peanuts germinate, the content of the components beneficial to health, such as resveratrol, increases within the peanut sprout. This study examined whether the ethanol extract of peanut sprout tea (PSTE) inhibits breast cancer growth and metastasis. MATERIALS/METHODS: After orthotopically injecting 4T1 cells into BALB/c mice to induce breast cancer, 0, 30, or 60 mg/kg body weight/day of PSTE was administered orally. Angiogenesis-related protein expression in the tumors and the degree of metastasis were analyzed. 4T1 and RAW 264.7 cells were co-cultured, and reverse transcription polymerase chain reaction was performed to measure the crosstalk between breast cancer cells and macrophages. RESULTS: PSTE reduced tumor growth and lung metastasis. In particular, PSTE decreased matrix metalloproteinase-9, platelet endothelial cell adhesion molecule-1, vascular endothelial growth factor-A, F4/80, CD11c, macrophage mannose receptor, macrophage colony-stimulating factor, and monocyte chemoattractant protein 1 expression in the tumors. Moreover, PSTE prevented 4T1 cell migration, invasion, and macrophage activity in RAW 264.7 cells. PSTE inhibited the crosstalk between 4T1 cells and RAW 264.7 cells and promoted the macrophage M1 subtype while inhibiting the M2 subtype. CONCLUSIONS: These results suggest that PSTE blocks breast cancer growth and metastasis to the lungs. This may be because the PSTE treatment inhibits the crosstalk between mammary cancer cells and macrophages and inhibits the differentiation of macrophages into the M2 subtype.

Expression of receptors of Vitamin D and cytokines in osteoclasts differentiated by M-CSF and ODF (Macrophage Colony-Stimulating Factor와 Osteoclast Differentiation Factor로 분화 유도된 생쥐 파골세포에서 Vitamin D 및 수종의 싸이토카인 수용체의 발현)

  • Seong, Soo-Mi;Um, Heung-Sik;Ko, Sung-Hee;Woo, Kyung-Mi;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.865-873
    • /
    • 2002
  • The primary cause of tooth loss after 30 years of age is periodontal disease. Destruction of alveolar bone by periodontal disease is done by bone resorbing activity of osteoclasts. Understanding differentiation and activation mechanism of osteoclasts is essential for controling periodontal disease. The purpose of this study is to identify the possible effects of Vitamin D and cytokines affecting osteoclasts and its precursor cells. Four to six week-old mice were killed and humerus, radius, tibia and femur were removed aseptically and washed two times with Hank's solution containing penicillin-streptomycin and then soft tissue were removed. Bone marrow cells were collected by 22 gauge needle. Cells were cultured in Hank's solution containing 1 mg/ml type II collagenase, 0.05% trypsin, 41mM EDTA. Supernatant solution was removed 5 times after 15 minutes of digestion with above mentioned enzyme solution, and remained bone particles were maintained in alpha-MEM for 15 minutes and $4^{\circ}C$ temperature. Bone particles were agitated for 1 minute and supernatant solution containing osteoclast precursor cells were filtrated with cell stainer. These separated osteoclast precursor cells were dispensed with 100-mm culture dish by $1{\times}10^7$ cells unit and cultured in ${\alpha}$- MEM containing 20 ng/ml recombinant human M-CSF, 30 ng/ml recombinant human soluble osteoclast differentiation factor and 10% fetal calf serum for 2 and 7 days. Total RNA of osteoclast precursor cells were extracted using RNeasy kit. One ${\mu}g$ of total RNA was reverse transcribed in $42^{\circ}C$ for 30 minutes using SuperScriptII reverse transcriptase. Expression of transcribed receptors of each hormone and cytokine were traced with 1 ${\mu}l$ of cDNA solution by PCR amplification. Vitamin D receptor WAS found in cells cultured for 7 days. TNF-${\alpha}$ receptor was found in cells cultured for 2 days and amount of receptors were increased by 7 days. IL-1 type I receptor was not found in cells cultured 2 and 7 days. But, IL-1 receptor type II was found in cells cultured for 2 days. TGF-${\alpha},{\beta}$type I receptor was found in cells cultured 2 and 7 days, and amount of receptors were increased by 7 days of culture. These results implies Vitamin D and cytokines can affect osteoclasts directly, and affecting period in differentiation cycle of osteoclasts is different by Vitamin D and cytokines.

Effect of White Ginseng-Ejung-tang Water Extract on Cytokine Production in LPS-induced RAW 264.7 Mouse Macrophages (Lipopolysaccharide로 유발된 마우스대식세포의 cytokine 생성증가에 대한 백삼이중탕 물추출물의 영향)

  • Park, Wan Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.738-744
    • /
    • 2013
  • The purpose of this study is to investigate effects of White Ginseng-Ejung-tang water extract (EJ) on production of various cytokines such as interleukin (IL)-2, IL-5, IL-6, IL-10, IL-12p70, macrophage inflammatory protein (MIP)-2, vascular endothelial growth factor (VEGF), keratinocyte-derived chemokine(KC), tumor necrosis factor (TNF)-${\alpha}$, and granulocyte macrophage colony-stimulating factor (GM-CSF) in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Levels of cytokines were measured by High-throughput multiplex bead array cytokine assay based on xMAP (multi-analyte profiling beads) technology. EJ significantly decreased levels of IL-2, IL-12p70, IL-5, MIP-2 for 24 h incubation at the concentrations of 25, 50, and 100 ${\mu}g/mL$ in LPS-induced RAW 264.7 (P < 0.05). EJ significantly decreased levels of IL-6 at the concentrations of 50 and 100 ${\mu}g/mL$ (P < 0.05). EJ significantly decreased levels of IL-10 and VEGF at the concentrations of 25 and 100 ${\mu}g/mL$ (P < 0.05). EJ significantly decreased levels of KC at the concentrations of 100 ${\mu}g/mL$ (P < 0.05). EJ did not show any significant effect on TNF-${\alpha}$ and GM-CSF production. These results suggest that EJ has anti-inflammtory property related with its inhibition of IL-2, IL-5, IL-6, IL-10, IL-12p70, MIP-2, VEGF, and KC production in LPS-induced macrophages.

Effect of Tea Polyphenols on Anticancer Activity and Cytokines Production (차 폴리페놀화합물의 사이토카인 생성 및 항암능에 대한 영향)

  • Shon, Mi-Yae;Nam, Sang-Hae
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1354-1360
    • /
    • 2007
  • Theaflavins (TF) and thearubigins (TR) are constituents of tea pigments which are polyphenols derived from Korean fermentation tea. After TF, TR and [(-) epigallocatechin-3-gallate](EGCG) have been applied to macrophage cell line (RAW264.7) nitric oxide (NO) synthesis and cytokines production were estimated. Cytokines production by enzyme linked immune-sorbent assay (ELISA) determined. NO production was increased by about 1.5-folds at the dose of $80\;{\mu}g/ml$ compared to control and lipopolysaccharide (LPS) stimulation when TF, TR and EGCG were applied to a RAW264.7 cell. Interleukin-6 (IL-6), Tumor necrosis factor ($TNF-{\alpha}$) and granulocyte-macrophage colony stimulating factor (GM-CSF) increased depended on concentrations of TF, TR and EGCG. The production of tumor necrosis $factor-{\alpha}$ increased highly in TR, TF and EGCG group with LPS. These results suggest that TF, TR and EGCG have immune-enhancement effect through the cytokine production. TF, TR and EGCG inhibited cancer cell viability, the anticancer effect of these polyphenols may explain the anti-tumor promotion action and antioxidant activity of these tea constituents.

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.

Effects of Curcuma longa Rhizoma on Asthma induced intra-nasal instillation of Ovalbumin in Mice (강황이 난황의 비강내 점적을 통하여 유발된 생쥐의 천식에 미치는 영향)

  • Lee, Jun-Hun;Kim, Jong-Han;Park, Su-Yeon;Choi, Jeong-Hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.3
    • /
    • pp.20-35
    • /
    • 2008
  • Objective : This study was designed to investigate the effects of Curcuma longa Rhizoma(CLR) on asthma. Methods : Detecting splenocyte proliferation rates, cytokines and antigen specific antibody isotypes in bronchoalveolar lavage fluid (BALF). In addition, the present author I also investigated changes in spleen and histopathological changes of lung tissues. Results : Oral administration of CLR lowered spleen weight and splenocyte proliferation rates. In addition, levels of IL-4, IL-17A and Granulocyte/Macrophage Colony-Stimulating Factor(GM-CSF), Th2 driven cytokines, were lowered respectively and IFN-g, and Th1 driven cytokine, were elevated by CLR. Levels of Ovalbumin(OVA) specific IgE and IgGl in BALF were also lowered by oral administration of CLR too. Conclusion : CLR is useful to treat patients with asthma and the mechanisms are related to the in suppression of Th2 skewing reactions.

  • PDF

Increased production of human granulocyte-macrophage colony stimulating factor (hGM -CSF) by the addition of stabilizing polymer in plant suspension cultures

  • Kim, Nan-Seon;Lee, Jae-Hwa;Kim, Yeong-Suk;Gwon, Tae-Ho;Yang, Mun-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.95-98
    • /
    • 2001
  • The effect of stabilizing polymer on hGM-CSF production was investigated in suspension cell cultures of transgenic tobacco. Secreted human GM -CSF from cell suspension cultures was detected in the medium at a maximum concentration of 180 ${\mu}g/L$ by ELISA. However, the secreted hGM -CSF was unstable in the medium, and rapidly degraded after day 5. In order to stabilize the secreted hGM-CSF, three stabilizing polymers were tested, polyethylene glycol, polyvinylpyrrolidone and gelatin. Gelatin was the most effective in stabilizing the secreted GM-CSF. Following the addition of 5% (w/v) gelatin, the maximum GM -CSF concentration reached 783 ${\mu}g/L$, a 4.6-fold increase over control.

  • PDF