DOI QR코드

DOI QR Code

Effect of Tea Polyphenols on Anticancer Activity and Cytokines Production

차 폴리페놀화합물의 사이토카인 생성 및 항암능에 대한 영향

  • Shon, Mi-Yae (Dept. of Food and Nutrition, Gyeongsang National University) ;
  • Nam, Sang-Hae (Dept. of Food Science, Jinju National University)
  • 손미예 (경상대학교 식품영양학과) ;
  • 남상해 (진주산업대학교 식품과학과)
  • Published : 2007.10.30

Abstract

Theaflavins (TF) and thearubigins (TR) are constituents of tea pigments which are polyphenols derived from Korean fermentation tea. After TF, TR and [(-) epigallocatechin-3-gallate](EGCG) have been applied to macrophage cell line (RAW264.7) nitric oxide (NO) synthesis and cytokines production were estimated. Cytokines production by enzyme linked immune-sorbent assay (ELISA) determined. NO production was increased by about 1.5-folds at the dose of $80\;{\mu}g/ml$ compared to control and lipopolysaccharide (LPS) stimulation when TF, TR and EGCG were applied to a RAW264.7 cell. Interleukin-6 (IL-6), Tumor necrosis factor ($TNF-{\alpha}$) and granulocyte-macrophage colony stimulating factor (GM-CSF) increased depended on concentrations of TF, TR and EGCG. The production of tumor necrosis $factor-{\alpha}$ increased highly in TR, TF and EGCG group with LPS. These results suggest that TF, TR and EGCG have immune-enhancement effect through the cytokine production. TF, TR and EGCG inhibited cancer cell viability, the anticancer effect of these polyphenols may explain the anti-tumor promotion action and antioxidant activity of these tea constituents.

국산 미생물 발효차의 폴리페놀 색소성분들인 데아플라빈(TF)과 데아루비긴(TR) 및 EGCG를 macrophage cell line (RAW264.7에 적용하여 nitric oxide 합성 및 사이토카인 생성을 평가하였다. 사이토카인 생성은 TF, TR 및 EGCG를 RAW264.5 cell에 적용하였을 때, $80\;{\mu}g/ml$ 농도에서 대조군과 LPS 촉진 처리에 비하여 nitric oxide 생성은 약 1.5배 증가하였다. IL-6, $TNF-{\alpha}$ 및 GM-CSF는 TF, TR 및 EGCG 농도에 의존적으로 증가하였다. $TNF-{\alpha}$ 생성은 크게 증가하였으며, 이는 TF, TR 및 EGCG가 사이토카인 생성을 통하여 면역증강 효과를 가질 것으로 나타났다 TF, TR 및 EGCG는 총 페놀 함량에 비례하여 항산화능을 나타내었으며, 암세포 증식을 유의적으로 억제하였다. 이들 폴리페놀물질의 억제효과는 그 성분들의 항암촉진작용 및 항산화활성에 의한 것으로 판단된다.

Keywords

References

  1. Andras, H., C. Ildiko, B. Tamas and K. C. Laszlo. 2005. The cytotoxic antitumor effect of MTH-68/H, a live attenuated Newcastle disease virus is mediated by the induction of nitric oxide synthesis in rat peritoneal macrophages in vitro. Cancer Lett. 20, 1-11.
  2. Baugh, J. A. and R. Bucala. 2001. Mechanisms for modulating TNF alpha in immune and inflammatory disease. Curr. Opin. Drug. Discov. Devel. 4, 635-650.
  3. Benzie, I. F. F. and J. J. Strain. 1996. The ferric reducing ability of plasma(FRAP) as measurement of 'antioxidant power': The Frap assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292
  4. Brannellec, D. and S. Chouaib. 1991. TNF: antitumoral agent at the border lines of immunity and inflammation. Oathologie 39, 230-239.
  5. Brune, B. 2003. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 10, 864-869. https://doi.org/10.1038/sj.cdd.4401261
  6. Carter, L. L. and R. W. Dutton. 1996. Type 1 and type 2: a fundamental dichotomy for all T-cell subsets. Curr. Opi. In. Immu. 8, 336-342. https://doi.org/10.1016/S0952-7915(96)80122-1
  7. Dalgleish, A. G. 2000. Cancer vaccines. British J. Cancer 82, 1619-1624. https://doi.org/10.1054/bjoc.2000.1217
  8. De la Puerta, R., M. E. M. Domingue, V. Rui-Gutierre, J. A. Flavill and J. R. S., Hoult. 2001. Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sci. 69, 1213-1222. https://doi.org/10.1016/S0024-3205(01)01218-8
  9. Feihl, F., M. Oddo, B. Waeber, L. Liaudet. 2004. In hibitors of nitrogenoxide species production in animal models of inflammation and future directions for therapy in inflammatory disorders. Curr. Med. Chem. Anti-Inflammatory Anti-Allergy Agents 3, 239-259. https://doi.org/10.2174/1568014043355339
  10. Hibbs, J. B. Jr., R. R. Taintor, Z. Vavrin and E. M. Rachlin. 1980. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87-94. https://doi.org/10.1016/S0006-291X(88)80015-9
  11. Hilton P. J. and R. T. Ellis. 1972. Estimation of market value of Central African tea by theaflavin analysis. J. Agric. Food Chem. 50, 1833-1839.
  12. Jeong, H. J. 2003. Immune-enhancement effect of the herbal combination Allergina. Clinica. Chimica. Acta. 337, 77-84. https://doi.org/10.1016/j.cccn.2003.07.001
  13. Keller, R. and R. Keist. 1989. Abilities of activated macrophages to manifest tumoricidal activity and to generate reactive nitrogen intermediates: a comparative study in vitro and ex vivo. Biochem. Biophys. Res. Commun. 157, 87-94.
  14. Marcocci, L., J. J. Maguire, M. T. Droy-Lefaix and L. Packer. 1994. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophy. Res. Commun. 201, 748-755. https://doi.org/10.1006/bbrc.1994.1764
  15. Martin, O. P., O. Okinda, M. Richard and M. Mutuku. 2004. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem. 85, 163-173. https://doi.org/10.1016/S0308-8146(02)00183-8
  16. Nathan, C. F. 1987. Secretory products of macrophages. J. Clin. Invest. 79, 319-326. https://doi.org/10.1172/JCI112815
  17. Ozgen, M., R. N. Reese, A. Z. Tulio, J. C. Scheerens and A. R. Miller. 2006. Modified 2,2-azino-bis-3-ethylbenzothiazoline- 6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 54, 1151-1157. https://doi.org/10.1021/jf051960d
  18. Parronchi, P., D. Macchia, M. P. Piccinni, P. Biswas, C. Simonelli, E. Maggi, M. Ricci, A. A. Ansari and S. Romagnani. 1991. Allergen and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. In: proceedings of the National Academy of Sciences of the United States of America 88, 4538-4542. https://doi.org/10.1073/pnas.88.10.4538
  19. Riemersma, R. A., C. A. Rice-Evans., R. M. Tyrrell., M. N. Clifford and M. E. Lean. 2001. Tea flavonoids and cardiovascular health. J. Med. 94, 277-282.
  20. Roberts, E. A. H. and R. F. Smith. 1961. Spectrophotometer measurements of theaflavins and thearubigins in black tea liquors in assessments of quality in teas. The analyst 86, 94-98. https://doi.org/10.1039/an9618600094
  21. Schlesier, K., M. Harwat, V. Bohm and R. Bitsch. 2002. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 50, 81-86. https://doi.org/10.1021/jf010865b
  22. Shiraki, M., Y. Hara, T. Osawa, H. Kumon, T. Nakauma and S. Kawaskishi. 1994. Antioxidative and antimutagenic effects of theaflavins from black tea. Mut. Res. 323, 29-34. https://doi.org/10.1016/0165-7992(94)90041-8
  23. Skehan, P., R. Storeng, D. Scudiero, A. Monks, L. McMahon, D. Vistica, T. Waren, H. Bokesch, S. Kenney and M. R. Boyd. 1990. New colorimetric cytotoxicity assay for anticancer drug screening. J. National Cancer Institute 82, 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  24. Shon, M. Y., S. K. Park and S. H. Nam. 2007. Antioxidant activity of theaflavin and thearubigin separated from Korean microbially fermented tea. J. Food Sci. Nutr. 12, 7-10. https://doi.org/10.3746/jfn.2007.12.1.007
  25. Terao, J., M. Piskula and Q. Yao. 1994. Protective effects by epicatechin, epicatechin gallate and quercetin on lipid peroxidation in phospholipid bilayers. Arch. Biochem. Biophy. 308, 278-284. https://doi.org/10.1006/abbi.1994.1039
  26. Xie, B., H. Shi, Q. Chen and C. T. Ho. 1993. Antioxidant properties of fractions and polyphenol constituents from green, oolong and black teas. Proc. Natl. Sci. Council Rep. China. 17, 77-84.
  27. Yee, S. T., Y. R. Jeong, M. H. Ha, S. H. Kim, M. M. Byun and S. K. Jo. 2000. Induction of nitric oxide and TNF-$\alpha$ by herbal plant extract in mouse macrophage. J. Korean Soc. Food Sci. Nutr. 29, 342-348.