• Title/Summary/Keyword: Macrophage Cell

Search Result 1,333, Processing Time 0.028 seconds

Modulatory Activity of Bifidobacterium sp. BGN4 Cell Fractions on Immune Cells

  • Kim Nam-Ju;Ji Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.584-589
    • /
    • 2006
  • Bifidobacteria has been suggested to exert health promoting effects on the host by maintaining microbial flora and modulating immune functions in the human intestine. We assessed modulatory effects of the different cell fractions of Bifidobacterium sp. BGN4 on macrophage cells and other immune cells from the spleen and Peyer's patches (PP) of mouse. Cell free extracts (CFE) of the BGN4 fractions induced well-developed morphological changes in the macrophages and increased the phagocytic activity more effectively than other fractions in the mouse peritoneal cells. Nitric oxide (NO) production was significantly reduced by both the cell walls (CW) and CFE in the cultured cells from the spleen and PP. The production of interleukin-6 (IL-6) and interleukin-10 (IL-10) was eminent in the spleen cells treated with experimental BGN4 cell fractions. However, in the PP cells, IL-6 was slightly decreased by the treatment with the whole cell (WC) and CW, whereas IL-10 was significantly increased by the treatment with the CW and CFE. These results suggest that different types of bifidobacterial cell fractions may have differential immunomodulatory activities depending on their location within the host immune system.

Antimicrobial Activities and Free Radical Scavenging Effect of Korean Folk Plants (민속식물의 항균활성 및 산화적 스트레스 개선 효과)

  • Choi, Jung Ran;Lee, Dong Gu;Ku, Jajung;Lee, Sang Yong;Kim, Hyun Ji;Park, Kwang-Woo;Cho, Eun Ju;Lee, Sanghyun
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.193-199
    • /
    • 2013
  • We investigated the antioxidative and antimicrobial activities of the methanol extracts from Korean folk plants (MKs) in Chungcheong Province. Among 30 MKs, 16 plants at $100{\mu}g/ml$ showed over 90% scavenging activity of 1,1-diphenyl-2-picrylhydrazy (DPPH) and 30 plants exerted the hydroxyl radical scavenging effect over 55%. Fourteen plants at the concentration $50{\mu}g/30{\mu}l$ showed strong microbial inhibition activity against Escherichia coli and Staphylococcus aureus, with clear zone greater than 11 mm in disc assays. Furthermore, the protective effect against anti-inflammatory system using RAW 264.7 macrophage cell was also studied. The treatment of LPS & INF-${\gamma}$ to RAW 264.7 cell induced nitric oxide (NO), however inhibit the formation of NO less than 50% of 5 plants. The present result indicates that the 30 species of MKs exerts protective effect of oxidative stress, antimicrobial activities and anti-inflammatory. In particular, Rhus javanica and Cornus controversa showed stronger effect on not only radical scavenging activity and inhibits growth of S. aureus but also highest protective effects from inflammation.

Effects of Anti-B7.1/B7.2 Antibodies on LPS-Stimulated Macrophages

  • Won, Tae-Joon;Huh, Yoon-Joo;Lim, Young-Tae;Song, Dong-Sup;Hwang, Kwang-Woo
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • T-cell activation depends on signals received by the T-cell receptor and CD28 co-stimulatory receptor. Since B7.1 and B7.2 molecules expressed on the surface of antigen presenting cells provide co-stimulatory signals through CD28 to T-cells, an inhibitor of CD28-B7.1/B7.2 binding has been proposed as a therapeutic agent for suppression of excessive T-cell activity. Although anti-B7.1/B7.2 antibodies are known to block B7.1 and B7.2 molecules, their effects on intracellular events in antigen presenting cells remain unclear. In this study, anti-B7.1/B7.2 antibodies decreased secretion of nitric oxide and pro-inflammatory cytokines such as TNF-$\alpha$, IL-$1{\beta}$, and IL-12 in LPS-activated RAW264.7 macrophage-like cells and peritoneal macrophages. Moreover, anti-B7.1/B7.2 antibodies inhibited $I{\kappa}B{\alpha}$ phosphorylation and down-regulated expression of co-stimulatory molecules including B7.1, B7.2, and PD-L1 in LPS-stimulated peritoneal macrophages. These findings suggest that CTLA4-Ig and anti-B7.1/B7.2 antibodies may be candidates to treat chronic inflammatory diseases and autoimmune responses caused by excessive activation of both T-cells and macrophages.

Effects of Ampelopsis Radix Extracts on Tumor Immunity

  • Park Seung Man;Cho Jung Hyo;Son Chang Gue;Shin Jang Wo;Lee Yeon Weo;Yoo Hwa Seung;Lee Nam Heon;Yun Dam Hee;Ahn Sang Woo;Cho Chong Kwan
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.46-55
    • /
    • 2005
  • Objectives: This experimental study was carried out to evaluate the immune modulating and anti-tumor activity of Ampelopsis Radix extracts (ARE). Materials and Methods: To elucidate the effects of ARE on the macrophage and NK cell activity, we analyzed NO production, NK cytotoxicity and gene expressions of cytokine related with macrophage and NK cell activity. Results: ARE activated and promoted macrophages to product NO in part. And, ARE has significant properties to activate macrophages and NK cells by promoting related cytokines like IL-1, IL-12, IFN-$\gamma$, iNOS and TNF-$\alpha$ gene expressions. We also observed that ARE promoted protein expression of IFN-$\gamma$, and TNF-$\alpha$ in mice splenocytes. Conclusions: ARE is an effective herbal drug for immune modulating and anti-cancer by promoting activity of macrophages and NK cells.

  • PDF

Peptidoglycan Up-Regulates CXCL8 Expression via Multiple Pathways in Monocytes/Macrophages

  • Lee, Chung Won;Chung, Sung Woon;Bae, Mi Ju;Song, Seunghwan;Kim, Sang-pil;Kim, Koanhoi
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.564-570
    • /
    • 2015
  • Peptidoglycan (PG), the gram positive bacterial pathogen-associated molecular patterns (PAMP), is detected in a high proportion in macrophage-rich atheromatous regions, and expression of chemokine CXCL8, which triggers monocyte arrest on early atherosclerotic endothelium, is elevated in monocytes/ macrophages in human atherosclerotic lesion. The aim of this study was to investigate whether PG induced CXCL8 expression in the cell type and to determine cellular signaling pathways involved in that process. Exposure of THP-1 cell, human monocyte/macrophage cell line, to PG not only enhanced CXCL8 release but also profoundly induced il8 gene transcription. PG-induced release of CXCL8 and induction of il8 gene transcription were blocked by OxPAPC, an inhibitor of TLR-2/4 and TLR4, but not by polymyxin B, an inhibitor of LPS. PG-mediated CXCL8 release was significantly attenuated by inhibitors of PI3K-Akt-mTOR pathways. PKC inhibitors, MAPK inhibitors, and ROS quenchers also significantly attenuated expression of CXCL8. The present study proposes that PG contributes to inflammatory reaction and progression of atherosclerosis by inducing CXCL8 expression in monocytes/macrophages, and that TLR-2, PI3K-Akt-mTOR, PKC, ROS, and MAPK are actively involved in the process.

Modulatory Effects of 21 kinds of Medicinal Herbs Including Herba Pogostemi (Agastache rugosa) on Nitric Oxide Production in Macrophage Cell line RAW 264.7 cells (곽향(Agastache rugosa)을 포함한 21종의 한약재가 대식세포주 RAW 264.7 세포의 nitric oxide(NO) 생산 조절에 미치는 효과)

  • Kim, Seung-Hyun;Kang, Mi-Young;Nam, Seok-Hyun
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.411-417
    • /
    • 2005
  • Aqueous extracts were prepared from 21 medicinal herbs including Herba Pogostemi (Agastache rugosa) to examine their modulatory effects on NO production in mouse macrophage cell line RAW264.7 cells. While almost all medicinal herb extracts failed to show marked scavenging activities to NO produced by LPS stimulation, only Herba Pogostemi showed a rather strong induction of NO production in RAW264.7 cells without stimulation with LPS. When we treated the cell with $200{\mu}M\;of\;N^G-monomethyl-L-arginine\;(N^GMMA)$, a NOS2 inhibitor, a significant reduction in NO production could be observed. Moreover, a treatment of $100{\mu}M$ pyrrolidine dithiocarbamate (PDTC) led to about a 79% reduction of NO production. These results demonstrated that the aqueous extract of Herba Pogostemi might provide a second signal for the expression of NOS2 in RAW264.7 cells, and suggested that Herba Pogostemi induces NO production through L-argininedependent pathway.

Methylene Blue-stained Interstitial Cells are Electrically Active in the Myenteric Board Freshly Prepared from the Murine Small Intestine

  • Lee, Kyu-Pil;Jeon, Ju-Hong;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.193-198
    • /
    • 2006
  • Many gastrointestinal muscles show electrical oscillation, so-called 'slow wave', originated from interstitial cells of Cajal (ICCs). Thus, a technique to freshly isolate the cells is indispensable to explore the electrophysiological properties of the ICCs. To apply an enzyme solution on the serosal surface for cell isolation, the intestine was inverted and 0.02% trypsin solution and 0.04% collagenase solution were applied to serosal cavity. After the enzyme treatment, mucosal layer was removed and longitudinal muscle layer was gently separated from the rest of tissue. The thin layer was stretched in the recording chamber and mounted on an inverted microscope. Using ${\beta}-escine$, perforated whole cell patch clamp technique was used. Under a microscope, the tissue showed smooth muscle cells and interstitial cells around the myenteric plexus. Under voltage clamp condition, three types of membrane potential were recorded. One group of interstitial cells, which were positive to methylene blue and CD34, showed spontaneous outward current. These cells had bipolar shape and were considered as fibroblast-like cells because of their peculiar shape and arrangement. Another group, positive to c-kit and methylene blue, showed spontaneous inward current. These cells had more rounded shape and processes and were considered as ICCs. The third, positive to c-kit and had granules containing methylene blue, showed quiet membrane potentials under the voltage-clamp mode. These cells appeared to be resident macrophages. Therefore, in the freshly isolated thin tissue preparation, methylene blue could easily identify three types of cells rather than morphological properties. Using this method, we were able to study electrical properties of fibroblast and residential macrophage as well as myenteric ICCs.

Expression of Inflammatory Cytokines by Beta-glucan in Macrophage Cell Line (대식세포주에서 베타-글루칸에 의한 염증성 사이토카인의 발현)

  • Kim, Mi-Jeong;Ryu, Han-Wook;Cho, Gye-Hyung;Kim, Ha-Won
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • Immune system can protect host attacking from a variety of microorganism and virus through innate and adaptive immunities. The innate immune system can be activated by recognition of conserved carbohydrates on the cell surface of pathogen resulting in protection, immunity regulation and inflammation. Immunostimulating and anti-tumor ${\beta}$-glucan, major cell wall component of many fungi, could be recognized as pathogen associated molecular pattern (PAMP) by C-type lectin such as pathogen recognition receptor (PRR) of host innate immunity cells. In spite of many studies of basidiomycetes ${\beta}$-glucan on immunostimulation, little is known about the precise mechanism as molecular-level. Among C-type lectins, dectin-1 was cloned and reported as a ${\beta}$-glucan receptor. In this report, we demonstrated induction of cytokine gene transcription by Ganoderma lucidum ${\beta}$-glucan in the absence or presence of lipopolysaccharide (LPS) by RT-PCR analysis. The expression of murine dectin-1 (MD-1) on RAW264.7 macrophage by RT-PCR showing both the full length, 757 bp $(MD-1{\alpha})$ and alternative spliced form, 620 bp $(MD-1{\beta})$. Both $MD-1{\alpha}$ and $MD-1{\beta}$ mRNAs were induced by ${\beta $-glucan both in the absence and presence of LPS. To explore expression of inflammatory cytokines by ${\beta}$-glucan, RAW264.7 cells were treated with ${\beta}$-glucan for 12 hours. As a result, the expressions of IL-1 IL-6, IL-l0 and $TNF-{\alpha}$ were increased by ${\beta}$-glucan treatment in a dose-dependent fashion. From these results, ${\beta}$-glucan induced transcriptions of dectin-1 and immune activating cytokine genes, indicating induction of immune allertness by expressing dectin-1 and secreting inflammatory cytokines.

Oriental Medicine papers review on Anticancer Effect of Ginseng (인삼의 항암작용에 대한 한의학 관련 논문 분석)

  • Jang, Sung-Ill;Yoo, Hwa-Seung
    • Journal of Haehwa Medicine
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • Backgrounds: Multidisciplinary approaches including surgery, chemotherapy, and radiation therapy are currently being performed to target various cancers in Western Medicine. However, some cancers still remain difficult to battle, which has long attracted many scientists for the discovery of new agents to fight cancers. Ginseng is one of the herbs used in Oriental Medicine including Korea, China and Japan. We have further investigated ginseng for its anticancer effect. Objective: This is a comprehensive review summary of anticancer effect of ginseng and ginsenoids as a possible agent for future cancer treatment. Methods: Data were retrieved from two web sites; www.pubmed.com and www.riss.kr, and authorized texts concerning anticancer effects of ginseng. From collected data, information on anticancer effect of ginseng was thoroughly sorted, restructured, then assessed. Results: Panax Ginseng C.A. Meyer belongs to Araliaceae Panax family, a perennial prairie plant with its root known as Ginseng Radix. Ginseng induces anticancer effect through cell cycle arrest, acceleration of apoptosis, anti-angiogenesis, and suppression of metastasis. Anticancer effect of ginseng may be due to single compound or multi-compound actions. Many studies report involvement of immune mechanisms of cytokines, Natural Killer (NK) cells, macrophages and some antibodies in enhancing anticancer effect of ginseng. In near future, possibility of applying these mechanisms into clinical trials is convinced. There were some important findings on saponin in ginsenoids in reviewing for this article; First, eradication of metastatic tumors were influenced by macrophage activation. Second, suppression of malignant melanoma cell metastasis to lung were induced by macrophage and NK cell activation in spleen with red ginseng acidic polysaccharide (RGAP). Third, final metabolites of M1, M4 had exerted anticancer effect of ginseng. Conclusion: Unknown anticancer mechanisms of ginseng have been studied for many years up until now. Ginseng is comprised of multiple bio-chemical compounds that create complex pharmaceutical interactions. Therefore, for its proper usage and safe prescription, studies on different types of ginseng and patients' susceptibility to ginseng according to their constitution and stages of the disease should be further pursued. More efforts are needed to understand the anticancer mechanisms of ginseng as well.

Korean Red Ginseng Saponin Fraction Downregulates Proinflammatory Mediators in LPS Stimulated RAW264.7 Cells and Protects Mice against Endotoxic Shock

  • Yayeh, Taddessee;Jung, Kun-Ho;Jeong, Hye-Yoon;Park, Ji-Hoon;Song, Yong-Bum;Kwak, Yi-Seong;Kang, Heun-Soo;Cho, Jae-Youl;Oh, Jae-Wook;Kim, Sang-Keun;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.263-269
    • /
    • 2012
  • Korean red ginseng has shown therapeutic effects for a number of disease conditions. However, little is known about the anti-inflammatory effect of Korean red ginseng saponin fraction (RGSF) in vitro and in vivo. Therefore, in this study, we showed that RGSF containing 20(S)-protopanaxadiol type saponins inhibited nitric oxide production and attenuated the release of tumor necrotic factor (TNF)-${\alpha}$, interleukin (IL)-6, granulocyte monocyte colony stimulating factor (GMCSF), and macrophage chemo-attractant protein-1 in lipopolysaccharide (LPS) stimulated murine macrophage RAW264.7 cells. Moreover, RGSF down-regulated the mRNA expressions of inducible nitric oxide synthase, cyclooxyginase-2, IL-$1{\beta}$, TNF-${\alpha}$, GMCSF, and IL-6. Furthermore, RGSF reduced the level of TNF-${\alpha}$ in the serum and protected mice against LPS mediated endotoxic shock. In conclusion, these results indicated that ginsenosides from RGSF and their metabolites could be potential sources of therapeutic agents against inflammation.