• Title/Summary/Keyword: Macrophage Cell

Search Result 1,332, Processing Time 0.028 seconds

A literal study of anti-tumor effects of chunghwangsan for leukemia (청황산(靑黃散)의 백혈병(白血病)에 대(對)한 항종양효능(抗腫瘍效能) 연구(硏究))

  • Park, Jong-hak;Son, Chang-gyu;Cho, Chong-kwan
    • Journal of Haehwa Medicine
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2002
  • In the literatual study of anti-tumor effects of chunghwangsan for leukemia, the results were as follows. 1. Chunghwangsan is composed of Indigo naturalis and Realgar. The composing rate is 9 : 1 and it is made into capsule or piece. The basic administration is 0.3g per day and could increase the quantity each day. 2. The effects of Chunghwangsan is expelling toxin and colling, colling blood to detumescence, drying wetness and anticancer are. So it can be used to treat AML, CML and lymphoma. 3. The anticancer component of Indigo naturalis is indirubin which has the effects of suppression the transplanted tumor, activating the phagocyte of macrophage, promoting the maturation of myeloblast to improve cure rate of CML. The anticancer component of Realgar is $As_2O_3$ which has the direct cellular toxicity for leukemia cell. 4. In viewpoints of oriental medicine, leukemia is malignant myeloid neoplasia in which pathogen invade to shaoyin(少陰). So Chunghwangsan which is expelling toxin and colling, colling blood to detumescence, drying wetness and anticancer is effective to leukemia. 5. In clinical reports, Chunghwangsan is often used in CML, and also used in AML, lymphoma and so on. 6. Chunghwangsan is cool-natured, so we must carefully pay attention to pregnant women and hematsdthenic patients. The main side effects are nausea, bone marrow pain, diarrhea, polydefecation, hematokezia and purpora. We sometimes take invigorating stomach medicine to prevent the side effects. 7. If we continuously develop Chunghwangsan and therapy for leukemia with syndrome differentiation. we can improve the response and cure rate for leukemia in the future.

  • PDF

Differential Induction of Septic Shock by Lipopolysacchrides from E. coli and S. abortus (S. abortus 유래 LPS와 E. coli 유래 LPS에 의한 패혈증성 쇽 유도 작용 비교)

  • Cho, Jae-Youl;Yoo, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.44-50
    • /
    • 2007
  • Acute septic shock is one of inflammatory diseases mediated by pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$. In this study, we examined the pathological difference and mechanism of lipopolysaccharides isolated from E. coli (E-LPS) or S. abortus (S-LPS) on inducing acute septic shock in ICR mouse. All mice were died by intraperitoneal treatment of S-LPS with 0.75 mg/kg, whereas E-LPS treated with even 3 mg/kg only showed 30% of mice lethal, indicating that S-LPS may be more feasible in triggering a strong septic shock condition. The secretion pattern of TNF-${\alpha}$, a critical pro-inflammatory cytokine in septic shock condition, was also distinct between E-LPS- and S-LPS-treated groups. Thus, S-LPS strikingly increased serum level of TNF-${\alpha}$ (6 ng/ml) at 1 h, while E-LPS just displayed at 2 ng/ml level. However the interaction of S-LPS with LPS receptor toll like receptor (TLR)-4, was not stronger than that of E-LPS, according to experiments with macrophage cell line RAW264.7 cells. Thus, E-LPS rather than S-LPS strongly enhanced the production of TNF-${\alpha}$. Interestingly, S-LPS more strongly up-regulated splenocyte proliferation, compared to E-LPS group, whereas there was no difference between S- or E-LPS treated groups in proliferation of Balb/c- or C57BL/6-originated splenic lymphocytes. Therefore, our data suggest that S-LPS is a more active endotoxin and that the strong septic shock-inducing effect of S-LPS seems due to the enhancement of early TNF-${\alpha}$ production and S-LPS-sensitive lymphocyte proliferation.

Thoracic Irradiation Recruit M2 Macrophage into the Lung, Leading to Pneumonitis and Pulmonary Fibrosis

  • Park, Hae-Ran;Jo, Sung-Kee;Jung, Uhee
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.177-188
    • /
    • 2017
  • Background: Radiation-induced pneumonitis and pulmonary fibrosis are common dose-limiting complications in patients receiving radiotherapy for lung, breast, and lymphoid cancers. In this study, we investigated the characteristics of effective immune cells related to pneumonitis and fibrosis after irradiation. Materials and Methods: After anesthesia, the whole thorax of C57BL/6 mice was irradiated at 14 Gy. The lung tissue and bronchoalveolar lavage fluid were collected at defined time points post-irradiation for the determination of histological and immunohistochemical analysis and inflammatory cell population infiltrated into the lung. Results and Discussion: Whole thoracic irradiation increased the deposition of extracellular matrix (ECM), lung weight, and pleural effusions, which started to die from 4 months later. At 4 months after irradiation, the numbers of macrophages and lymphocytes as well as neutrophils were increased dramatically in the lung. Interestingly, the macrophages that were recruited into the lung after irradiation had an enlarged foamy morphology. In addition, the expressions of chemokines (CCL-2, CCL-3, CXCL-10) for the attraction of macrophages and T cells were higher in the lung of irradiated mice. The high expressions of these chemokines were sustained up to 6 months following irradiation. In thoracic irradiated mice, infiltrated macrophages into the lung had the high levels of Mac-3 antigens on their surface and upregulated the hallmarks of alternatively activated macrophages such as arginase-1 and CD206. Furthermore, the levels of IL-4 and IL-13 were higher in a BAL fluid of irradiated mice. Conclusion: All results show that thoracic irradiation induces to infiltrate various inflammation-related immune cells, especially alternatively activated macrophages, through enhancing the expression of chemokines, suggesting that alternatively activated macrophages are most likely important for leading to pulmonary fibrosis.

Effects of Alkali Extract of Ganoderma lucidum IY007 on Complement and Reticuloendothelial System (영지 균사체의 알칼리 추출물이 보체계와 망내계에 미치는 영향)

  • Lee, June-Woo;Jeong, Hoon;Chung, Chun-Hee;Lee, Kweon-Haeng
    • The Korean Journal of Mycology
    • /
    • v.18 no.3
    • /
    • pp.137-144
    • /
    • 1990
  • To examine effects on complement and reticuloendothelial system, alkali extract was isolated from cultured mycelium of Ganoderma lucidum IY107. It was shown to strongly activate both classical and alternative pathways of complement as compared with krestin. Activated complement C3, 3rd peak, was observed by crossed immunoelectrophoresis. It was also shown to activate reticuloendotherial system of ICR mice in the carbon clearance test and to increase hemolytic plaque forming cells of the spleen. Carbohydrate and protein contents of the alkali extract were 10% and 49%, respectively. The carbohydrate consisted of four monosaccharides and the protein contained 16 amino acids.

  • PDF

Inhibitory Effect of a Phosphatidyl Ethanolamine Derivative on LPS-Induced Sepsis

  • Lee, Chunghyun;An, Hyun-Jung;Kim, Jung-In;Lee, Hayyoung;Paik, Sang-Gi
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • Sepsis is the leading cause of death in critically ill patients. Today, around 60% of all cases of sepsis are caused by Gram-negative bacteria. The cell wall component lipopolysaccharide (LPS) is the main initiator of the cascade of cellular reactions in Gram-negative infections. The core receptors for LPS are toll-like receptor 4 (TLR4), MD-2 and CD14. Attempts have been made to antagonize the toxic effect of endotoxin using monoclonal antibodies against CD14 and synthetic lipopolysaccharides but there is as yet no effective treatment for septic syndrome. Here, we describe an inhibitory effect of a phosphatidylethanolamine derivative, PE-DTPA (phosphatidylethanolamine diethylenetriaminepentaacetate) on LPS recognition. PE-DTPA bound strongly to CD14 ($K_d$, $9.52{\times}10^{-8}M$). It dose dependently inhibited LPS-mediated activation of human myeloid cells, mouse macrophage cells and human whole blood as measured by the production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and nitric oxide, whereas other phospho-lipids including phosphatidylserine and phosphatidylethanolamine had little effect. PE-DTPA also inhibited transcription dependent on $NF-{\kappa}B$ activation when it was added together with LPS, and it rescued LPS-primed mice from septic death. These results suggest that PE-DTPA is a potent antagonist of LPS, and that it acts by competing for binding to CD14.

Effects of Particulate Matters on A549 and RAW 264.7 Cells (대도시의 입자상 물질이 A549와 RAW 264.7 세포에 미치는 영향)

  • Baak, Young-Mann;Kim, Ji-Hong;Kim, Kyoung-Ah;Ro, Chul-Un;Kim, Hyung-Jung;Lim, Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • Objectives : To investigate the effects of particulate matter (PM), a marker of environmental pollution derived from combustion sources, on lung epithelial cells (A549) and macrophage (RAW 264.7). Methods : The production of reactive radicals from lung cells, the lipid peroxidation of cell membrane, and the cytotoxicity of PM were measured using an in vitro model. The results were compared with a control group. Results : The presence of PM significantly increased the production of reactive oxygen species and reactive nitrogen species with time and in a dose dependent pattern and also increased the malondialdehyde concentration in lung epithelial cells. The cytotoxicity of PM was increased with increasing concentration of PM. Conclusions : It has been suggested that urban particulate matter causes an inflammatory reaction in lung tissue through the production of hydroxyl radicals, nitric oxides and numerous cytokines. The causal chemical determinant responsible for these biologic effects are not well understood, but the bioavailable metal in PM seems to determine the tonicity of inhaled PM.

  • PDF

Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells

  • An, Xiangxue;Lee, Sang Gil;Kang, Hee;Heo, Ho Jin;Cho, Youn-Sup;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1367-1374
    • /
    • 2016
  • The present study evaluated the total phenolic and flavonoid contents as well as total antioxidant capacity (TAC) of three cultivars of Actinidia arguta Planch. kiwi berries; cv. Mansoo (Mansoo), cv. Chiak (Chiak), and cv. Haeyeon (Haeyeon). In addition, the anti-inflammatory effects of the three cultivars of kiwi berries were investigated using a lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cell line. Mansoo had the highest total phenolic content and TAC among the three cultivars, whereas Chiak had the highest total flavonoid content. The total antioxidant capacities of the kiwi berry extracts were more strongly correlated with total phenolic content than with total flavonoid content. The kiwi berry extracts suppressed the secretion of pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α, from LPS-stimulated RAW 264.7 cells. The release of nitrite, an indirect indicator of nitric oxide, was also ameliorated by pre-treatment with the kiwi berry extracts in a dose-dependent manner. Cellular-based measurements of antioxidant capacity exhibited that the kiwi berry extracts had cellular antioxidant capacities. Such cellular antioxidant effects are possibly attributed to their direct antioxidant capacity or to the inhibition of reactive oxygen species generation via anti-inflammatory effects. Our findings suggest that kiwi berries are potential antioxidant and anti-inflammatory agents.

Chemical constituents from the culture filtrate of a Himalayan soil fungus, Preussia sp. and their anti-inflammatory activity (히말라야의 토양 곰팡이, Preussia sp. 배양액으로부터 추출된 화학 성분들 및 항 염증 활성)

  • Youn, Ui Joung;Seo, Seung Suk;Yim, Jung Han;Kim, Il Chan;Han, Se Jong
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • A new naturally occurring benzoic acid derivative, benzyl 2,4-di(benzyloxy)benzoate (1) and six known compounds (2-7) were isolated from the fungus, Preussia sp. found in frozen soil of the Himalaya Mountain. The structures of the new compound, together with the known compounds were determined by 1D-and 2D-NMR experiments, as well as comparison with published values. In addition, to the best of our knowledge, the known compounds 2-7 were isolated for the first time from the genus Preussia and the family Sporormiaceae. The isolates were evaluated for cancer chemopreventive potential based on their ability to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in mouse macrophage RAW 264.7 cells in vitro. Compounds 1 and 2 inhibited NO production by 50.7% and 88.5% at a concentration of 100 mg/ml, respectively.

Trichomonas vaginalis and trichomoniasis in the Republic of Korea

  • Ryu, Jae-Sook;Min, Duk-Young
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.2 s.138
    • /
    • pp.101-116
    • /
    • 2006
  • Vaginal trichomoniasis, caused by Trichomonas vaginalis, is the most common sexually transmitted disease. More than 170 million people worldwide are annually infected by this protozoan. In the Republic of Korea, 10.4% of women complaining of vaginal symptoms and signs were found to be infected with T. vagina/is. However, despite its high prevalence, the pathogenesis of T. vaginalis infection has not been clearly characterized although neutrophil infiltration is considered to be primarily responsible for the cytologic changes associated with this infection. We hypothesized that trichomonads in the vagina sometime after an acute infection secrete proteins like excretory-secretory product that have a chemotactic effect on neutrophils, and that these neutrophils are further stimulated by T. vaginalis to produce chemokines like IL-8 and $GRO-\alpha$, which further promote neutrophil recruitment and chemotaxis. Thus, neutrophil accumulation is believed to maintain or aggravate inflammation. However, enhanced neutrophil apoptosis induced by live T. vaginalis could contribute to resolution of inflammation. Macrophages may constitute an important component of host defense against T. vaginalis infection. For example, mouse macrophages alone and those activated by lymphokines or nitric oxide are known to be involved in the extracellular killing of T. vaginalis. In the host, T. vaginalis uses a capping phenomenon to cleave host immunoglobulins with proteinases and thus escape from host immune responses. Recently, we developed a highly sensitive and specific diagnostic polymerase chain reaction (PCR) technique using primers based on a repetitive sequence cloned from T. vaginalis (TV-E650), and found that the method enables the detection of T. vaginalis at concentrations as low as 1 cell per PCR mixture.

Inhibition of Nitric Oxide Production by Ethyl Digallates Isolated from Galla Rhois in RAW 264.7 Macrophages

  • Park, Pil-Hoon;Hur, Jin;Lee, Dong-Sung;Kim, Youn-Chul;Jeong, Gil-Saeng;Sohn, Dong-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.419-424
    • /
    • 2011
  • Galla Rhois and its components are known to possess anti-infl ammatory properties. In the present study, we prepared equilibrium mixture of ethyl m-digallate and ethyl p-digallate isomers (EDG) from Galla Rhois and examined its effect on nitric oxide (NO) production in murine macrophage cell line. Treatment of RAW264.7 macrophages with EDG signifi cantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression stimulated by LPS, as assessed by Western blot and quantitative RT-PCR analyses. We also demonstrated that EDG treatment led to an increase in heme oxygenase-1 (HO-1) mRNA and protein expression. EDG treatment also enhanced expression level of nuclear factor-erythroid 2-related factor 2 (Nrf2) in nucleus, which is critical for transcriptional induction of HO-1. Treatment with SnPP (tin protoporphyrin IX), a selective HO-1 inhibitor, reversed EDG-mediated inhibition of nitrite production, suggesting that HO-1 plays an important role in the suppression of NO production by EDG. Taken together, these results indicate that EDG isolated from Galla Rhois suppresses LPS-stimulated NO production in RAW 264.7 macrophages via HO-1 induction.