• Title/Summary/Keyword: Macrophage Cell

Search Result 1,333, Processing Time 0.03 seconds

Berberine Chloride Inhibits Receptor Activator of $NF-{\kappa}B$ Ligand-induced Osteoclastogenesis via Preventing ERK Activation

  • Cheon, Myeong-Sook;Kim, Myung-Hee;Lee, Su-Ui;Ryu, Shi-Yong;Kim, Ho-Kyoung;Min, Yong-Ki;Kim, Seong-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.2 s.20
    • /
    • pp.157-164
    • /
    • 2007
  • An imbalance in bone remodeling that is caused by increased bone resorption over bone formation leads to most adult skeletal diseases including osteoporosis. Since the development of anti-resorptive agents from natural substances has recently gained more interest in the treatment of osteoporosis, we evaluated the effects of 222 natural compounds on receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced of tartrate-resistance acid phosphatase (TRAP) activity in RAW264.7 murine macrophage cell, and found that berberine chloride is one of compounds inhibiting RANKL-induced TRAP activity. Berberine chloride significantly inhibited the RANKL-induced TRAP activity and the formation of multinucleated osteoclasts in a dose-dependent manner. In addition, berberine chloride prevented the RANKL-induced mRNA expression of TRAP, matrix metalloproteinase 9 and c-Src, which have been known to be highly expressed in the process of osteoclastogenesis. Interestingly, berberine chloride prevented the RANKL-induced activation of extracellular signal-regulated kinase (ERK) which is one of mitogen-activated protein (MAP) kinases. In conclusion, berberine chloride could inhibit the osteoclastogenesis via preventing the activation of ERK/MAP kinase signaling pathway.

  • PDF

The Inhibitory Effects of Socheongryong-tang and Socheongryong-tang plus Sasam (Adenophorae Radix) on the IL-6, IL-8 and GM-CSF mRNA Levels in Human Epithelial Cells (소청용탕과 소청용탕가사삼이 BEAS-2B 인간 기관지상피세포의 IL-6, IL-8 및 GM-CSF mRNA level에 미치는 영향)

  • 정진용;정희재;정승기;이형구
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.74-83
    • /
    • 2003
  • Background : Production of cytokines by bronchial epithelial cells may contribute to the local accumulation of inflammatory cells in patients with bronchial asthma. In many recent studies, molecular biological methods have been used to investigate the role of cytokines in pathogenesis and new therapeutic targets of asthma. Objective : We aimed to identify the dose-dependent inhibitory effects of Socheongryong-tang and Socheongryong-tang plus Sasam (Adenophorae Radix) on the mRNA expressions of Interleukin (IL)-6, IL-8 and granulocyte macrophage colony stimulating factor (GM-CSF) involved in the asthma model. Materials and Methods : In this study, BEAS-2B cell lines, human epithelial cells, were used. These cells were stimulated by tumor necrosis factor $(TNF)-{\alpha},{\;}IL-1{\beta}$ and histamine for artificial inflammatory expression. ${\beta}-actin$ messenger RNA (mRNA) was used for the internal standard. After each 24 hours of the Socheongryong-tang (小靑龍湯) and Socheongryong-tang plus Sasam (小靑 龍湯加沙蔘) treatment, total cellular RNAs were collected by applying RNAzol directly to the living cells. Then the transcriptional activities of IL-6, IL-8 and GM-CSF were measured by RT-PCR with electrophoresis. Results : In the Socheongryong-tang (小靑龍湯) study, the mRNA expressions of IL-6, IL-8 and GM-CSF were significantly inhibited compared to that of the control group (p<0.05). In the Socheongryong-tang plus Sasam (小靑龍湯加沙蔘) study, the mRNA expressions of IL-6, IL-8 and GM-CSF were significantly inhibited compared to that of the control group (p<0.05). Conclusions : This study shows that Socheongryong-tang (小靑龍湯) and Socheongryong-tang plus Sasam (小靑龍湯加沙蔘) have dose-dependent inhibitory effects on the mRNA expressions of IL-6, IL-8 and GM-CSF in human epithelial cells, so these herbal medicines may inhibit the inflammatory process of asthma. Advanced studies are required to investigate the mechanisms of inhibition by herbal medicine in the asthma model.

  • PDF

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

The Inhibitory Effect of Premature Citrus unshiu Extract on Atopic Dermatitis In Vitro and In Vivo

  • Kang, Gyeoung-Jin;Han, Sang-Chul;Yi, Eun-Jou;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.173-180
    • /
    • 2011
  • Atopic dermatitis (AD) is a chronic, recurrent inflammatory skin disease that is associated with Th2 cell-mediated allergy. The process that leads to infiltration of inflammatory cells into an AD lesion is remarkably dependent on various chemokines, especially TARC (thymus and activation-regulated chemokine/CCL17) and MDC (macrophage-derived chemokine/CCL22). Serum levels of these chemokines are over-expressed in AD patients. Citrus unshiu, which is known as Satsuma mandarin, has anti-oxidative, anti-inflammation, and anti-microviral activity. Therefore, we investigated the effect of EtOH extract of premature C. unshiu on AD. We did this using a DNCB-induced AD mouse model. We also tried to confirm an inhibitory effect for premature C. unshiu on the expression of inflammatory chemokines in IFN-${\gamma}$ and TNF-${\alpha}$ stimulated HaCaT human keratinocytes. We found that extract of premature C. unshiu reduced DNCB-induced symptoms such as hyperkeratosis, increased skin thickness, and infiltrated mast cells, in our AD-like animal model. The extract decreased levels of IFN-${\gamma}$ and IL-4 in ConA-stimulated splenocytes isolated from DNCB-treated mice. Also, extract of premature C. unshiu inhibited mRNA expression and protein production of TARC and MDC through the inhibition of STAT1 phosphorylation. These results suggest that C. unshiu has anti-atopic activity by regulating inflammatory chemokines such as TARC and MDC.

The pistil of nelumbo nucifera has anti-inflammatory effect in LPS-activated Raw 264.7 cells

  • Choi, Woo-Yeon;Jo, Mi-Jeong;Zhao, Rong-Jie;Byun, Sung-Hui;Kim, Mi-Ryeo;Kim, Sang-Chan
    • Herbal Formula Science
    • /
    • v.18 no.1
    • /
    • pp.169-179
    • /
    • 2010
  • The pistil of nelumbo nucifera (PNN) is used in the treatment of nocturnal pollution, hematemesis, epistaxis, metrorrhagia and diarrhoea in traditional medicine. The present study was examined to evaluate the effects of PNN on the production of pro-inflammatory mediators in vitro. After the treatment of PNN, cell viability was measured by MTT assay, nitric oxide (NO) production was monitored by measuring the nitrite content in culture medium. The protein bands were determined by immunoblot analysis and levels of cytokines were analyzed by sandwich immunoassays. In the MTT assay, the doses of PNN extract (0.03, 0.10 mg/ml) had no significant cytotoxicity. The increases of NO production and inducible nitric oxide synthase expression were detected in lipopolysaccharide(LPS)-activated Raw 264.7 cells compared with control, in contrast, these increases were significantly attenuated by pre-treatment with PNN. In cytokine assay, the massive pro-inflammatory cytokines such as tumour necrosis factor-$\alpha$, interleukin (IL)-$1{\beta}$ and IL-6 were induced in LPS-activated Raw 264.7 cells, but pre-treatment of Raw 264.7 cells with PNN caused inhibition (TNF-$\alpha$=14.17%, IL-$1{\beta}$=107.43%, IL-6=46.27%) the production of cytokines by LPS. In addition, PNN reduced prostaglandin E2 productions in a dose-dependent manner (0.03mg/ml=37.52%, 0.10 mg/ml=83.77%) as a consequence of the inhibition of cyclooxygenase-2 expression. Taken together, our data indicates that PNN can regulate the inflammatory response in macrophage cells activated by Gram-negative infection.

Immunomodulating Activities of Water-Soluble Exopolysaccharides Obtained from Submerged Culture of Lentinus lepideus

  • Jung, Yu-Sun;Yang, Byung-Keun;Jeong, Yong-Tae;Islam, Rezuanul;Kim, Sang-Min;Song, Chi-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1431-1438
    • /
    • 2008
  • Immunomodulating activities of water-soluble exopolysaccharides (LL-EX) obtained from submerged mycelial culture of Lentinus lepideus were studied and their effectiveness was compared with lipopolysaccharide (LPS). The influence of the LL-EX on macrophage cellular lysosomal enzyme activity was to stimulate up to 267%, 392%, and 464% at the level of 10, 50, and $100{\mu}g/ml$, respectively. When the LL-EX was further fractionated into LL-Fr.I and Fr.II by Sepharose CL-6B gel chromatography, the cellular lysosomal enzyme activity of LL-Fr.II (2.1-fold) was higher than Fr.I (1.2-fold). Moreover, both LL-Fr.I and Fr.II stimulated the cytokines IL-1$\beta$, TNF-$\alpha$, and IL-6 in macrophages. In mixed lymphocyte reaction, LL-Fr.I and Fr.II enhanced the splenocyte proliferation up to 1.2-fold and 1.4-fold ($50{\mu}g/ml$), respectively, stimulating only T lymphocytes. The fractions of LL-EX not show any direct toxicity against human gastric adenocarcinoma cell (AGS). The molecular masses of LL-Fr.I and Fr.II were estimated to be about 1,986 kDa and 21 kDa, respectively. The total sugar and protein contents of the two fractions were 84.97% and 69.88%, and 15.03% and 30.12%, respectively. The sugar and amino acid compositions of the LL-Fr.I and Fr.II were also analyzed in detail.

Analysis of Transcriptional Profiles to Discover Biomarker Candidates in Mycobacterium avium subsp. paratuberculosis-Infected Macrophages, RAW 264.7

  • Cha, Seung Bin;Yoo, Anna;Park, Hong Tae;Sung, Kyoung Yong;Shin, Min Kyoung;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1167-1175
    • /
    • 2013
  • Paratuberculosis (PTB) or Johne's disease is one of the most serious chronic debilitating diseases of ruminants worldwide that is caused by Mycobacterium avium subsp. paratuberculosis (MAP). MAP is a slow-growing bacterium that has very long latent periods, resulting in difficulties in diagnosing and controlling the disease, especially regarding the diagnosis of fecal shedders of MAP without any clinical signs. Based on this situation, attempts were made to identify biomarkers that show early responses to MAP infection in a macrophage cell line, RAW 264.7. In response to the infection with the bacterium, a lot of genes were turned on and/or off in the cells. Of the altered genes, three different categories were identified based on the time-dependent gene expression patterns. Those genes were considered as possible candidates for biomarkers of MAP infection after confirmation by quantitative RT-PCR analysis. To the best of our knowledge, this is the first attempt at discovering the host transcriptomic biomarkers of PTB, although further investigation will be required to determine whether these biomarker candidates are associated within the natural host.

Identification of genes related to intramuscular fat content of pigs using genome-wide association study

  • Won, Sohyoung;Jung, Jaehoon;Park, Eungwoo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • Objective: The aim of this study is to identify single nucleotide polymorphisms (SNPs) and genes related to pig IMF and estimate the heritability of intramuscular fat content (IMF). Methods: Genome-wide association study (GWAS) on 704 inbred Berkshires was performed for IMF. To consider the inbreeding among samples, associations of the SNPs with IMF were tested as random effects in a mixed linear model using the genetic relationship matrix by GEMMA. Significant genes were compared with reported pig IMF quantitative trait loci (QTL) regions and functional classification of the identified genes were also performed. Heritability of IMF was estimated by GCTA tool. Results: Total 365 SNPs were found to be significant from a cutoff of p-value <0.01 and the 365 significant SNPs were annotated across 120 genes. Twenty five genes were on pig IMF QTL regions. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator, forkhead box protein O1, ectodysplasin A receptor, ring finger protein 149, cluster of differentiation, tyrosine-protein phosphatase non-receptor type 1, SRY (sex determining region Y)-box 9 (SOX9), MYC proto-oncogene, and macrophage migration inhibitory factor were related to mitogen-activated protein kinase pathway, which regulates the differentiation to adipocytes. These genes and the genes mapped on QTLs could be the candidate genes affecting IMF. Heritability of IMF was estimated as 0.52, which was relatively high, suggesting that a considerable portion of the total variance of IMF is explained by the SNP information. Conclusion: Our results can contribute to breeding pigs with better IMF and therefore, producing pork with better sensory qualities.

A Novel Synthetic Compound, YH-1118, Inhibited LPS-Induced Inflammatory Response by Suppressing IκB Kinase/NF-κB Pathway in Raw 264.7 Cells

  • Yun, Chang Hyun;Jang, Eun Jung;Kwon, Soon Cheon;Lee, Mee-Young;Lee, Sangku;Oh, Sei-Ryang;Lee, Hyeong-Kyu;Ahn, Kyung-Seop;Lee, Ho-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • For the search of a potent first-in-class compound to inactivate macrophages responsible for inflammatory responses, in the present study, we investigated the anti-nflammatory effects of YH-1118, a novel synthetic compound, in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, Raw 264.7. YH-1118 inhibited LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression at both the protein and mRNA levels. The suppression of LPS-induced iNOS expression by YH-1118 was mediated via nuclear factor kappa B (NF-κB), but not activator protein-1 (AP-1) transcription factor. This was supported by the finding that YH-1118 attenuated the phosphorylation of inhibitor of κBα (IκBα) and nuclear translocation and DNA binding activity of NF-κB. Through the mechanisms that YH-1118 inhibited the activation of IκB kinases (IKKs), upstream activators of NF-κB, or p38 MAPK, YH-1118 significantly suppressed LPS-induced production of pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 (p < 0.05). In conclusion, our results suggest that YH-1118 inhibits LPS-induced inflammatory responses by blocking IKK and NF-κB activation in macrophages, and may be a therapeutic candidate for the treatment of various inflammatory diseases.

Immunomodulatory activity of acharan sulfate isolated from Achatina fulica

  • Kim, Hyeon-Seon;Lee, Jae-Kwon;Yang, In-Ho;Lee, Young-Ran;Shin, Hyun-Jeong;Park, Eun-Ju;Park, Hyung-Seok;Kim, Yeong-Shik;Lee, Chong-Kil
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.307.2-308
    • /
    • 2002
  • Acharan sulfate. a new glycosaminoglycan(GAG) isolated from the giant African snail Achatina fulica. was shown to have antitumor activity in vivo. To elucidate the mechanisms for the antitumor activity. we examined its impact on professional antigen presenting cells such as macrophages and dendritic cells (DCs). Acharan sulfate stimulated cytokine production (TNF-a and IL -1b). nitric oxide release. and morphological changes in a dose dependent manner on a macrophage cell Line Raw 264.7 cells. The differentiation-inducing activity of acharan sulfate was examined on immature DCs. Immature DCs were generated from mouse bone marrow (BM) cells by culturing with GM-CSF and IL-4, and then stimulated with acharan sulfate. The resultant DCs were then examined for funcional and phenotypic properties. It was found that acharan sulfate could induce functional maturation of immature DCs as determined by increased allogenic mixed lymphocyte reaction (MLR) and IL-12 production. Phenotypic. analysis for the expression of class II MHC molecules and major co-stimulatory molecules such as B7-1, B7-2 and CD40 also confirmed that acharan sulfate could induce maturation of immature DCs. These results suggest that that the antitumor activity of acharan sulfate is at least in part due to activation adn induction of differentiation of professinal antigen presenting cells. (omitted)

  • PDF