• 제목/요약/키워드: Macrocyclic complex

검색결과 88건 처리시간 0.019초

Synthesis and Spectroscopic Characterization of Manganese(II), Iron(III) and Cobalt(III) Complexes of Macrocyclic Ligand. Potential of Cobalt(III) Complex in Biological Activity

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • 대한화학회지
    • /
    • 제55권6호
    • /
    • pp.919-925
    • /
    • 2011
  • A new series of manganese(II), iron(III) and cobalt(III) complexes of 14-membered macrocyclic ligand, (3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine) have been prepared and characterized by elemental analyses, IR, UV-VIS, $^1H$- and $^{13}C$- NMR spectra, magnetic susceptibilities, conductivities, and ESR measurements. Molar conductance measurements in DMF solution indicate that the complexes are electrolytes. The ESR spectrum for cobalt(III) complex in $CD_3OD+10%D_2O$ after exposure to $^{60}Co-{\gamma}$-rays at 77 K using a 0.2217 M rad $h^{-1}$ vicrad source showed $g_{\perp}$ > $g_{\parallel}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_z2$ orbital with covalent bond character. In this case, the ligand hyperfine tensors are nearly collinear with ${\gamma}$-tensors, so there is no major tendency to bend. Therefore, little extra delocalization via the ring lobe of the $dz^2$ orbital occurs. However, the ESR spectrum in solid state after exposure to $^{60}Co-{\gamma}$-rays at 77 K showed $g_{\parallel}$ > $g_{\perp}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_x2_{-y}2$ ground state as the resulting spectrum contains a large number of randomly oriented molecules provided that, the principle directions of g and A tensors. Manganese (II) complex 2, $[H_{12}LMn]Cl_4.2H_2O$, showed six isotropic lines characteristic to an unpaired electron interacting with a nucleus of spin 5/2, however, iron(III) complex 3, $[H_{12}LFe]Cl_5.H_2O$, showed spectrum of a high spin $^{57}Fe$ (I=1/2), $d^5$ configuration. The geometry of these complexes was supported by elemental analyses, IR, electronic and ESR spectral studies. Complex 1 showed exploitation in reducing the amount of electron adducts formed in DNA during irradiation with low radiation products.

Electrochemical Study of Nickel(II) Complexes with Diaza-Macrocyclic Ligands in Acetonitrile

  • Moo-Lyong Seo;Zun-Ung Bae;Tae-Myoung Park
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권4호
    • /
    • pp.368-370
    • /
    • 1991
  • The electrochemical behavior and the complex formation between N$i^{2+}$ and 1,7-diazs-15-crown-5 and 1,10-diaza-18-crown-6 in acetonitrile solution have been studied by DC polarography, differential puke polarography and cyclic voltammetry. Nickel(Ⅱ) complexes gave a single well-defined wave. The formation constants of their complexes were 1$0^{4.89} and 10^{3.86}$, respectively. Nickel(Ⅱ) ion was found to form complexes of 1-to-1 composition with 1,7-diaza-15-crown-5 and 1,10-diaza-18-crown-6. In addition, reduction steps were irreversible and the reduction current were diffusion controlled. The electrochemical reduction mechanism of Ni(Ⅱ)-macrocyclic diaza-crown complexes in acetonitrile solution is estimated.

Effective Uranyl Binding by a Dihydroxyazobenzene Derivative. Ionization of Uranium-Bound Water

  • 이관표;장보빈;서정훈
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권9호
    • /
    • pp.814-819
    • /
    • 1996
  • In search of simple host molecules for uranyl ion which form 1: 1-type complexes with high formation constants that can be used either in extraction of uranium from seawater or in catalysis of biologically important organic reactions, the uranophile activities of dihydroxyazobenzene derivative 1 were studied. Uranyl ion and 1 form a 1: 1-type complex with a very large formation constant. The formation constant was measured at pH 7-11.6 by competition experiments with carbonate ion. From the resulting pH dependence, ionization constants of the two aquo ligands coordinated to the uranium of the uranyl complex of 1 were calculated. The ionization constants were also measured by potentiometric titration of the uranyl complex of 1. Based on these results, the pKa values of the two aquo ligands were estimated as 7.1 and 11.0, respectively. At pH 7.5-9.5, therefore, the complex exists mostly as monohydroxo species. Under the conditions of seawater, 1 possesses greater affinity toward uranyl ion compared with other uranophiles such as carbonate ion, calixarene derivatives, or a macrocyclic octacarboxylate. In addition, complexation of 1 with uranyl ion is much faster than that of the calixarene or octacarboxylate uranophiles.

Syntheses and Characterization of Cr(III)-Hydrogensalicylato and -Hydroxonitrophenolato Tetraaza Macrocyclic Complexes

  • Byun, Jong-Chul;Yoon, Chang-Hoon;Mun, Dae-Hun;Kim, Ki-Ju;Park, Yu-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.687-693
    • /
    • 2006
  • Chromium(III) complexes, cis-[Cr([14]-decane)$(HOC _6H _4COO) _2$]$ClO _4$ I and cis-[Cr([14]-decane)(OH) $(OC _6H _4NO _2)$]$ClO _4{\cdot}H _2O$ II ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) are synthesized and structurally characterized by a combination of elemental analysis, conductivity, IR and VIS spectroscopy, and X-ray crystallography. The complexes crystallizes in the monoclinic space groups, $C2 _1$/a in I and $P2 _1$/n in II. Analysis of the crystal structure of complex I reveals that central chromium(III) ion has a distorted octahedral coordination environment and two hydrogensalicylato ligands are unidentate to the chromium(III) ion via the carboxyl groups in the cis-position. For monomeric complex I the hydrogensalicylato coordination geometry is as follows: Cr-O(average) = 1.984(3) $\AA$;Cr-N range = 2.105(3)-2.141(4) $\AA$;C(24)-O(4) = 1.286(5) $\AA$;N(2)-Cr-N(4) (equatorial position) = 96.97(15)${^{\circ}}$; N(1)-Cr-N(3) (axial position) = 168.27(15)${^{\circ}}$; O(1)-Cr-O(4) = 85.70(13)${^{\circ}}$. The crystal structure of II has indicated that chromium(III) ion is six-coordinated by four secondary amines of the macrocycle, hydroxide anion and nitrophenolate anion.

Synthesis and Characterization of Dinuclear Ni(II) Complexes with Tetraazadiphenol Macrocycle Bearing Cyclohexanes

  • Kim, Ki-Ju;Jung, Duk-Sang;Kim, Duk-Soo;Choi, Chi-Kyu;Park, Ki-Min;Byun, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권11호
    • /
    • pp.1747-1751
    • /
    • 2006
  • The dinuclear tetraazadiphenol macrocyclic nickel(II) complexes [$Ni_2$([20]-DCHDC)]$Cl_2$ (I), [$Ni_2$([20]-DCHDC)]$(ClO_4)_2{\cdot}2CH_3CN $ (II(b)) and [$Ni_2$([20]-DCHDC)$(NCS)_2$] (III) {$H_2$[20]-DCHDC = 14,29-dimethyl-3,10,18,25-tetraazapentacyclo-[25,3,1,$0^{4,9}$,$1^{12,16}$,$0^{19,24}$]ditriacontane-2,10,12,14,16(32),17,27(31), 28,30-decane-31,32-diol} have been synthesized by self-assembly and characterized by elemental analyses, conductances, FT-IR and FAB-MS spectra, and single crystal X-ray diffraction. The crystal structure of II(b) is determined. It crystallizes in the monoclinic space group P2(1)/c. The coordination geometries around Ni(II) ions in I and II(b) are identical and square planes. In complex III each Ni(II) ion is coordinated to $N_2O_2$ plane from the macrocycle and N atoms of NCS- ions occupying the axial positions, forming a square pyramidal geometry. The nonbonded Ni…Ni intermetallic separation in the complex II(b) is 2.8078(10) $\AA$. The FAB mass spectra of I, II and III display major fragments at m/z 635.1, 699.4 and 662.4 corresponding to [$Ni_2$([20]-DCHDC)(Cl + 2H)]$^+$, [$Ni_2$([20]-DCHDC)$(ClO_4\;+\;2H)]^+$ and [$Ni_2$([20]-DCHDC)(NCS) + 6H]$^+$, respectively.

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part IV); Synthesis and Characterization of Cr(III)-Acetylacetonato, -Malonato and -Oxalato Macrocyclic Complexes

  • Byun, Jong-Chul;Han, Chung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1395-1402
    • /
    • 2005
  • The reaction of cis-[Cr([14]-decane)$(OH)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = acetylacetonate (acac), oxalate (ox) or malonate (mal)} leads to a new cis-[Cr([14]-decane)(acac)]$(ClO_4)_2{\cdot}(1/2)H_2O\;(1),\;cis-[Cr([14]-decane)(ox)]ClO_4{\cdot}(1/2)H_2O\;(2)\;or\;cis-[Cr([14]-decane)(mal)]ClO_4{\cdot}(1/4)H_2O\;(3)$. These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. Analysis of the crystal structure of cis-[Cr([14]-decane)(acac)]$(ClO_4)_2{\cdot}(1/2)H_2O$ reveals that central chromium(III) has a distorted octahedral coordination environment and two acetylacetonate-oxygen atoms are bonded to the chromium(III) ion in the cis positions. The angle $N_{axial}-Cr-N_{axial}$ deviates by $11^{\circ}$ from the ideal value of $180^{\circ}$ for a perfect octahedron. The bond angle O-Cr-O between the chromium(III) ion and the two acetylacetonate-oxygen atoms is close to $90^{\circ}$. The bond lengths of Cr-O between the chromium and the acetylacetonate-oxygen atoms are 1.950(3) and 1.954(2) $\AA$. They are shorter than those between chromium and nitrogen atoms of the macrocycle. The IR spectra of 1, 2 and 3 display bands at 1560 {ν (C=O)}, 1710 {${\nu}_{as}$(OCO)} and 1660 $cm^{-1}$ {${\nu}_{as}$(OCO)} attributed to the acac, ox and mal auxiliary ligands stretching vibrations, respectively.

Synthesis and Characterization of New Mono-N-functionalized Tetraaza Macrocyclic Nickel(II) and Copper(II) Complexes

  • Kim, Hyun-Ja;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2565-2570
    • /
    • 2011
  • The reaction of bromoacetonitrile with 3,14-dimethyl-2,6,13,17-tetraazatetracyclo[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{10}$) containing a N-$CH_2$-N linkage produces 17-cyanomethyl-3,14-dimethyl-2,6,13,17-tetraazatetracyclo-[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{11}$). The mono-N-functionalized macrocyclic complexes $[ML^2]^{2+}$ (M = Ni(II) or Cu(II); $L^2$ = 2-cyanomethyl-5,16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^{7.12}$]docosane) can be prepared by the reaction of $L^{11}$ with nickel(II) or copper(II) ion in acetonitrile. The N-$CH_2CN$ group attached to $[ML^2]^{2+}$ readily reacts with water or methanol to yield the corresponding complexes of $HL^3$ bearing one N-$CH_2CONH_2$ pendant arm or $L^4$ bearing one $N-CH_2C(=NH)OCH_3$ group. The $N-CH_2CONH_2$ or $N-CH_2C(=NH)OCH_3$ group of each complex is coordinated to the central metal ion. Both $[NiL^4(H_2O)]^{2+}$ and $[CuL^4]^{2+}$ are quite stable in acidic aqueous solutions, but undergo hydrolysis to yield $[Ni(HL^3)(H_2O)]^{2+}$ or $[Cu(HL^3)]^{2+}$ in basic aqueous solutions. In contrast to $[Cu(HL^3)]^{2+}$, $[Ni(HL^3) (H_2O)]^{2+}$ is readily deprotonated to form $[NiL^3 (H_2O)]^+$ ($L^3$ = a deprotonated form of $HL^3$) in basic aqueous solutions.

Synthesis and Characterization of Nickel(II) Tetraaza Macrocyclic Complex with 1,1-Cyclohexanediacetate Ligand

  • Lim, In-Taek;Kim, Chong-Hyeak;Choi, Ki-Young
    • 대한화학회지
    • /
    • 제62권6호
    • /
    • pp.427-432
    • /
    • 2018
  • The reaction of [$[Ni(L)]Cl_2{\cdot}2H_2O$ (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[$14,4,0^{1.18},0^{7.12}$]docosane) with 1,1-cyclohexanediacetic acid ($H_2cda$) yields mononuclear nickel(II) complex, [$Ni(L)(Hcda^-)_2$] (1). This complex has been characterized by X-ray crystallography, electronic absorption, cyclic voltammetry and thermogravimetric analyzer. The crystal structure of 1 exhibits a distorted octahedral geometry with four nitrogen atoms of the macrocycle and two 1,1-cyclohexanediacetate ligands. It crystallizes in the triclinic system P-1 with a = 11.3918(7), b = 12.6196(8), $c=12.8700(8){\AA}$, $V=1579.9(2){\AA}^3$, Z = 2. Electronic spectrum of 1 also reveals a high-spin octahedral environment. Cyclic voltammetry of 1 undergoes one wave of a one-electron transfer corresponding to $Ni^{II}/Ni^{III}$ process. TGA curve for 1 shows three-step weight loss. The electronic spectra, electrochemical and TGA behavior of the complex are significantly affected by the nature of the axial $Hcda^-$ ligand.