• Title/Summary/Keyword: Macro-scale

Search Result 289, Processing Time 0.036 seconds

A Dual-scale Network with Spatial-temporal Attention for 12-lead ECG Classification

  • Shuo Xiao;Yiting Xu;Chaogang Tang;Zhenzhen Huang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2361-2376
    • /
    • 2023
  • The electrocardiogram (ECG) signal is commonly used to screen and diagnose cardiovascular diseases. In recent years, deep neural networks have been regarded as an effective way for automatic ECG disease diagnosis. The convolutional neural network is widely used for ECG signal extraction because it can obtain different levels of information. However, most previous studies adopt single scale convolution filters to extract ECG signal features, ignoring the complementarity between ECG signal features of different scales. In the paper, we propose a dual-scale network with convolution filters of different sizes for 12-lead ECG classification. Our model can extract and fuse ECG signal features of different scales. In addition, different spatial and time periods of the feature map obtained from the 12-lead ECG may have different contributions to ECG classification. Therefore, we add a spatial-temporal attention to each scale sub-network to emphasize the representative local spatial and temporal features. Our approach is evaluated on PTB-XL dataset and achieves 0.9307, 0.8152, and 89.11 on macro-averaged ROC-AUC score, a maximum F1 score, and mean accuracy, respectively. The experiment results have proven that our approach outperforms the baselines.

Origin of Layering and Its Relation to Magma Convection in the Skaergaard Intrusion (Skaergaard 암체에서 layering의 기원과 그의 마그마 대류와의 관계)

  • Yun D. Jang
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.627-648
    • /
    • 2001
  • At least two distinct types of layering are present in the middle zone of the Skaergaard intrusion; alternating plagioclase-rich and pyroxene-rich, macro-rhythmic layers, and smaller scale, modally-graded, rhythmic layers. The macro-rhythmic layers are ubiquitous in the middle zone of the Layered Series, but are not observed in the lower and upper zone of the Layered Series or in the wall or roof tories of the intrusion. They range from 0.3 to 17.3 m in thickness, have sharp upper and lower boundaries, and can be traced laterally for over 2 ]fm in outcrop. Although individual macrorhythmic layers are not internally graded, many contain smaller-scale, modally-graded layers. Modally-graded. rhythmic layers are a common feature of the Layered Series but are not abundant in either the Upper Border Series or the Marginal Border Series. They range in thickness from 1 to 50 cm and can be traced laterally in outcrop for up to 100 m. Their lateral termination ranges from abrupt to gradational, and they are often associated with cut and fill structures and crossbedding suggestive of current activity. They are characterized by sharp lower and gradational upper contacts, and by strong intra-layer modal grading with olivine, ilmenite, and magnetite concentrated at the base, pyroxene concentrated above the base, and plagioclase concentrated at the top. The layers are also grain-size graded with the maximum size for each phase occurring at the horizon in the layer where the phase is most abundant. Modally-graded, rhythmic layers in the middle zone of the Layered Series occur within both plagioclase-rich and pyroxene-rich macro-rhythmic layers.

  • PDF

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

ON THE DISCREPANCY OF CORONAL MAGNETIC FIELDS IN SOLAR OPTICS AND RADIO

  • MA YUE-HuA;LI XIAO-QING
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.309-311
    • /
    • 1996
  • It is analysed the discrepancy about the coronal magnetic field between solar optic and solar radio using magnetic fibril concept with filling factor and fractal structure model. The magnetic field of $\~$ 100 G considered in solar optics is mean value in a large scale, and that of $\~$1000 G in solar should be the value of fine structures inside 'macro' loop.

  • PDF

Numerical Simulation of the Response of a Masonry-Infilled RC Frame by Strut Models (스트럿 모델에 의한 조적채움 RC 골조의 수치적 모의)

  • 이한선;우성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.439-444
    • /
    • 2003
  • The response of a 1:5 scale 3-story masonry-infilled RC frame which was designed only for gravity loads were simulated by using a nonlinear analysis program, RUAUMOKO 2D. The objective of this study is to understand behavior of masonry-infilled panel and to verify the correlation between the experimental and analytical responses of a masonry-infilled RC frame. It is concluded from this comparison that the strength, stiffness and local behavior of the structure can be predicted with some reliability using this macro-model.

  • PDF

Effect of Scale-down of Structure on Dynamic Characteristic Parameters in Bolted-Joint Beams (구조물의 소형화가 볼트 결합부의 동특성 파라미터에 미치는 영향 분석)

  • Kim, Bong-Suk;Lee, Seong-Min;Song, Jun-Yeob;Lee, Chang-Woo;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.108-116
    • /
    • 2007
  • To overcome many defects such as the high product cost, large energy consumption, and big space capacity in conventional mechanical machining, the miniaturization of machine tool and micro factory systems has been envisioned recently. The object of this paper is to research the effect of dynamic characteristic parameters in bolted-joint beams, which is widely applied to the joining of mechanical structures in order to identify structural system characteristics and to predict dynamic behavior according to scale-down from macro to micro system as the development of micro/meso-scale machine tool and micro factories. Modal parameters such as the natural frequency, damping ratio, and mode shape from modal testing and dynamic characteristics from finite element analysis are extracted with all 12 test beam models by materials, by size, and by joining condition, and then the results obtained by both methods are compared.

Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes

  • Daikh, Ahmed Amine;Drai, Ahmed;Houari, Mohamed Sid Ahmed;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.643-656
    • /
    • 2020
  • This article presents a comprehensive static analysis of simply supported cross-ply carbon nanotubes reinforced composite (CNTRC) laminated nanobeams under various loading profiles. The nonlocal strain gradient constitutive relation is exploited to present the size-dependence of nano-scale. New higher shear deformation beam theory with hyperbolic function is proposed to satisfy the zero-shear effect at boundaries and parabolic variation through the thickness. Carbon nanotubes (CNTs), as the reinforced elements, are distributed through the beam thickness with different distribution functions, which are, uniform distribution (UD-CNTRC), V- distribution (FG-V CNTRC), O- distribution (FG-O CNTRC) and X- distribution (FG-X CNTRC). The equilibrium equations are derived, and Fourier series function are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear or sinusoidal mechanical loadings. Numerical results are obtained to present influences of CNTs reinforcement patterns, composite laminate structure, nonlocal parameter, length scale parameter, geometric parameters on center deflection ad stresses of CNTRC laminated nanobeams. The proposed model is effective in analysis and design of composite structure ranging from macro-scale to nano-scale.

Foreign Immigrants‘ Recognition on Macro-contexts of Transnational Migration (외국인 이주자의 거시적 이주 배경에 관한 인지)

  • Choi, Byung-Doo;Lee, Gyung-Ja
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.64-88
    • /
    • 2010
  • Rapidly increasing transnational migration can be seen as a typical process which has proceeded under macro-contexts of socio-spatial characters of origin and destination country and their relationships, shaped with global uneven regional development in the process of glocalization and development of transportation and communication on the global level. In order to consider macro-contexts of transnational migration, this paper emphasizes the concept of multicultural space and some key elements implied in it, that is, place, territory, network, scale (suggested by Jessop et al.) and spatial flow and difference. As results of questionnaire analysis of foreign immigrants' recognition of macro-contexts, this paper suggests some findings: that is, a high level of recognition of all types of foreign immigrants on global changes, the most negative recognition of migrant workers among 4 types of foreign immigrants on economic and social conditions of their origin country, a positive recognition of people in all regions of their origin (except few countries such as Japan) on international migration, and a low level of their recognition in all types on S. Korea's characters as their destination country.

  • PDF

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

An Institutional Analysis of the Large Scale National R&D Policy: Continuity and Change of Institutions (대형국가연구개발사업 정책의 제도적 분석: 정책제도의 지속과 변화)

  • Yeom, Jae-Ho;Lee, Min-Ho
    • Journal of Korea Technology Innovation Society
    • /
    • v.15 no.1
    • /
    • pp.129-162
    • /
    • 2012
  • This study analyzed the institutional characteristics of large scale national R&D policies in Korea. The analysis examined the continuity and change of the policy institution. It dealt with G7 Project, 21C Frontier Project, and Next Generation Growth Engine Project as the major large scale national R&D policies in Korea. The theoretical approach of this study is to the continuity and change or evolution of policy institution from the perspective of new institutionalism. Based on the theoretical analysis, it emphasized the analysis of the institutions in three different levels: macro, meso, and micro level. In the analysis, the research examined the idea of policy institution or policy goal, participants in the policy institution, and policy instruments in different levels. The outcome of the analysis shows that the policy of large scale national R&D in Korea has the institutional continuity in the macro level. In the meso level, however, the policy institution changes due to the administration change and the influence of political economic environment. In the micro level, the policy institution changes based on the symbolic influence of policy goal and the interest of bureaucrats. The research finds that the micro and meso level institutional changes cause the evolution of policy institutions and the major change of policy institution.

  • PDF