• 제목/요약/키워드: Machining effect

검색결과 576건 처리시간 0.026초

실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments)

  • 이춘만;권병두;고태조;정종윤;정원지
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.88-96
    • /
    • 2002
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

MC를 이용한 측면 연삭에 관한 연구 (A Study on the Side-cut Grinding using the Mactining Center)

  • 김창수;서영일;정선환;이종찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.900-904
    • /
    • 1997
  • A problem in the grinding process using the machining center(MC) with a small diametric wheel is the machining error due to due to decrease of quill diameter. In this paper, a side-cut grinding is performed with a vitrified bonded CBN wheel by the MC, and the relation between grinding force and machining error for grinding conditions is investigated experimentally. It is show that the normal force has a significant effect on the machining error.

  • PDF

Enhanced Machinability of Sinter-hardenable PM Steels

  • Lindsley, Bruce;Schade, Chris;Fillari, George
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.299-300
    • /
    • 2006
  • Machining of sinter-hardened PM steels provides a challenge for part makers. To facilitate machining of these materials, a new additive (MA) has been developed to increase tool life during the machining process. Hard turning tests were performed to evaluate the effect of this new additive. Sintered compacts with the MA additive were compared to compacts without a machining aid and to compacts that contained the MnS additive. This paper discusses the improvement in machinability with this new additive in sinter-hardenable PM steels.

  • PDF

불산대체용액을 이용한 유리의 초음파 가공 (Chemical-assisted Ultrasonic Machining of Glass by Using HF Substitute Solution)

  • 전성건;남권선;김병희;김헌영;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.262-267
    • /
    • 2004
  • Ultrasonic machining has been known as one of the conventional machining methods in the glass fabrication processes. In ultrasonic machining, typically, glass is removed by the impulse energy of the abrasive generated by the ultrasonic power. However, when the machining feature decrease under hundreds of micrometers, as conventional ultrasonic machining uses only the impulse energy of the abrasive, the speed of ultrasonic machining decreases significantly and the surface roughness becomes deteriorated. To overcome this size effect, the chemicals which can erode glasses, such as HF, XF, etc, are added to the slurry. The chemical-assisted ultrasonic machining method, so called, is another alternating effective way for micro machining of glasses. In previous work, we used the hydrofluoric acid (HF) as an additive chemical. But, as the HF solution is too poisonous to be used as a ultrasonic process additive, it is needed to be substituted by other safe chemicals. As results of the machinability comparison of several chemicals, the GST-500F was selected to replace the HF. The GST-500F (pH $4.0{\pm}1.0$) is non-volatile, odorless. During experimental works, it was shown that the machining rate increases 1.5 times faster than the conventional ultrasonic machining. The machining load also decreases. However, the enlargement of the hole diameter and significant tool wear are still the problems to be solved.

Lubrication Effect of Liquid Nitrogen in Cryogenic Machining Friction on the Tool-chip Interface

  • Jun Seong-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.936-946
    • /
    • 2005
  • The liquid nitrogen as an environmentally safe coolant has been widely recognized in cryo­genic machining, its function as a lubricant is plausible due to its chemical inertness, physical volatility and low viscosity. Since a reduced friction is a direct witness of the lubrication effect from a tribological viewpoint, this paper presents an evaluation of the apparent friction coefficient on the tool-chip interface in cryogenic cutting operations to prove and characterize the lubricity of LN2 in cryogenic machining. The cryogenic cutting technology used in this study is based on a cooling approach and liquid nitrogen delivery system which are intended to apply liquid nitrogen in well-controlled fine jets to selectively localized cutting zones and to penetrate liquid nitrogen to the tool-chip interface. It has been found that the apparent friction coefficient can be significantly reduced in cryogenic machining, depending on the approach of liquid nitrogen delivery.

미세 방전 가공에서 방전 면적과 축전 용량에 따른 가공율 특성 (Characteristics of Material Removal Rate According to Discharge Area and Capacitance in MEDM)

  • 박동희;류시형;김보현;주종남
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.183-190
    • /
    • 2003
  • In this paper, investigated are the machining characteristics such as material removal rate and machining time with respect to discharge area and capacitance in micro electrical discharge machining (MEDM). As discharge area determined by the electrode size and capacitance change, the optimal feedrate to allow the minimum machining time changes. The smaller discharge area is, the lower MRR becomes because of the area effect. As the capacitance increases, MRR also increases. However there is the limit capacitance beyond which the MRR does not increase anymore. As the discharge area increases, the limit capacitance also increases.

다중열원 보조가공을 위한 평판 시편의 예열 효과에 관한 해석적 연구 (An Analytical Study on the Preheating Effect of Flat Workpiece in Thermally Assisted Machining by Multi Heat Sources)

  • 문성호;이춘만
    • 한국정밀공학회지
    • /
    • 제33권8호
    • /
    • pp.629-634
    • /
    • 2016
  • Laser-assisted machining (LAM) is one of the most effective methods of processing difficult-to-cut materials, such as titanium alloys and various ceramics. However, it is associated with problems such as the inability of the laser heat source to generate an appropriate preheating temperature. To solve the problem, thermally assisted machining with multiple heat sources is proposed. In this study, thermal analysis of multiple heat sources by laser and arc is performed according to power, heat source size, and leading heat source position. Then, the results are analyzed according to each condition. The results of this analysis can be used as a reference to predict preheating temperature in thermally assisted machining with multiple heat sources.

광조형물의 표면조도 향상에 관한 연구 (A Study on Improving the Surface Roughness of Stereolithography Parts)

  • 안대건;김호찬;정해도;이석희
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.196-203
    • /
    • 2004
  • SL(Stereolithography) part is made by piling up thin layers which causes the stair stepping effect at the surface of SL parts. The effect brings about excessive surface roughness and cuts down the merits of using SL part. Hence, additional post-machining finishing such as traditional grinding is required. But the traditional post-machining is detrimental to part geometry and time consuming. In this study, therefore, a paraffin coating and grinding post-machining is newly proposed to improve the surface quality of SL fart. The paraffin which has suitable properties for the proposed post-machining is coated all over the part surface. By grinding the only over-coated paraffin based on boundary of the SL part surface, the surface roughness can be improved without any damage on the part. Also, it is verified that SL part finished by the proposed post-machining process can be applied for rapid tooling as pattern through manufacturing silicon rubber molding and casting test.

코팅와이어가 와이어 방전가공 특성에 미치는 영향 (The effect of coating wire on the performance of wire electrical discharge machining)

  • 임세환;김준현;김주현
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.177-185
    • /
    • 2004
  • The machining performance of wire electrical discharge machining(WEDM), such as cutting speed, surface roughness and straightness depend on the electrode, and the machining parameters are diverse and affect each other. Therefore operator must have a lot of experiences of the parameter for the better machining performance in WEDM. An approach to minimize the time for determining of parameters setting is proposed. Based on the Taguchi method, the significant factors affecting the machining performance are determined. Types of electrodes are arranged at inner array in tables of orthogonal arrays so that we can estimate machining performances of each electrode. Coating wire shows better performances than brass wire in cutting speed but it produces poor surface roughness, and two wires shows similar performance in straightness

Liquid Nitrogend의 감찰효과 -물리적 현상에 의한 절삭력- (The Lubrication Effect of Liquid Nitrogen in Cryogenic Machining [I]- Part 1: Cutting Force Component with Physical Evidences -)

  • Jun Seong Chan;Jeong Woo Cheol
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.209-221
    • /
    • 2002
  • Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.