• Title/Summary/Keyword: Machining effect

Search Result 576, Processing Time 0.027 seconds

Study the effect of machining process and Nano Sio2 on GFRP mechanical performances

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, the effect of Nano silica (SiO2) on the buckling strength of the glass fiber reinforced laminates containing the machining process causes holes were investigated. The tests have been applied on two status milled and non-milled. To promote the mechanical behavior of the fiber-reinforced glass epoxy-based composites, Nano sio2 was added to the matrix to improve and gradation. Nano sio2 is chosen because of flexibility and high mechanical features; the effect of Nanoparticles on surface serenity has been studied. Thus the effect of Nanoparticles on crack growth and machining process and delamination caused by machining has been studied. We can also imply that many machining factors are essential: feed rate, thrust force, and spindle speed. Also, feed rate and spindle speed were studied in constant values, that the thrust forces were studied as the main factor caused residual stress. Moreover, entrance forces were measured by local calibrated load cells on machining devices. The results showed that the buckling load of milled laminates had been increased by about 50% with adding 2 wt% of silica in comparison with the neat damaged laminates while adding more contents caused adverse effects. Also, with a comparison of two milling tools, the cylindrical radius-end tool had less destructive effects on specimens.

Effect of Compounding Electrolytic Machining in Ball End Milling (볼엔드밀 절삭가공에서 전해복합의 효과)

  • 주종길;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1025-1028
    • /
    • 2001
  • In this report, a new method compounding the electrolytic machining with ball end milling process to increase the machining efficiency was introduced. From the experimental result, it was confirmed that effect of cutting force reduction and finer surface roughness can be obtained in a certain condition of ball end milling and electrolytic machining conditions.

  • PDF

A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect (크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석)

  • 김국원;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

The Effect on the Machining Phenomenon due to the Change of the Quill Rigidity in a Side-Cut Grinding (측면 연삭가공에 있어서 퀄축강성변화가 가공현상에 미치는 현상)

  • 김창수;서영일;이종찬;정성환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.33-37
    • /
    • 1995
  • A side-cut grinding generates a machining error by the decrease of the quill rigidity. In this paper, The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity is investigated experimentally. The slenderness ratio of the quill is a significant factor to analyse the change of the grinding force and machining error.

  • PDF

Cutting Force Reduction Characteristics by Compounding Electrolytic Machining in Ball End Milling (볼엔드밀 절삭에서 전해복합에 의한 절삭력 저감 특성)

  • 이영표;박규열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.268-273
    • /
    • 2000
  • In this report, a new method compounding the electrolytic machining with ball end milling process to increase the machining efficiency was introduced. And the cutting characteristics by electrolytic machining conditions was examined. From the experimental results, it was confirm-ed that effect of cutting force reduction obtained at the condition of transpassive state of electrolytic machining conditions.

  • PDF

A Study on Machining Effects on Residual Stress at Dissimilar Metal Weld Region (기계가공이 이종용접부의 잔류응력에 미치는 영향에 관한 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Geun;Lee, Seong-Ho;Park, Chi-Yong;Lee, Seung-Geon;Park, Jai-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.56-63
    • /
    • 2011
  • his paper aimed to understand the residual stress in the dissimilar metal welds of nuclear power plant. Two kinds of residual stress were considered, which caused by welding and machining. Residual stress due to mechanical machining was measured by hole-drilling technique and x-ray diffraction method for the SA508 and F316L. Weld residual stress at dissimilar metal weld between SA508 and F316L was evaluated by FEA. Residual stress profiles were obtained for the inside surface and through thickness of welds. Machining effect was also analyzed by FEA. According to the residual stress measurement, it was observed that mechanical machining can generate tensile stress on the surface of the test material. However, FEA results showed that mechanical machining did not increase the tensile stress on the surface of weld region. Further study with more elaborate measurement and numerical analysis is required to identify the effect of machining on residual stress in the dissimilar metal weld region.

Study on the Accelerating Effect of an Accelerating Unit in Grinding using Machining Center (MC를 이용한 연삭시 증속기의 증속효과에 관한 연구)

  • Seo, Yeong-Il;Kim, Chang-Su;Choi, Hwan;Lee, Jong-Chan;Cheong, Seon-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.103-108
    • /
    • 1999
  • A problem in the grinding with a small diametric wheel is the decrease of wheel speed. In order to resolve this problem, an accelerating unit which increases the wheel speed is recommended. In this paper, the accelerating effect of an accelerating unit has been investigated through the side-cut grinding experiments performed with a vitrified bonded CBN wheel in a machining center(MC). The static stiffness, normal force, and machining error were measured in the experiments. As the accelerating unit is attached on the column of machining center, the static stiffness of tool system is largely decreased. But as the wheel speed increased by the accelerating unit, this problem is overcome and machining efficiency is improved. The lesser the quill stiffness was, the higher the accelerating effect became.

  • PDF

A Study on High Speed Machining Distortion Characteristics of Aluminum Lithium Alloys Wing Rib (Al-Li 합금 윙립의 고속가공 변형특성에 관한 연구)

  • Lee, In-Su;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.111-118
    • /
    • 2014
  • Aluminum lithium alloys are new materials developed for lightweight aircraft parts. However, as compared with conventional aluminum alloys in high-speed machining, problems such as tool wear, machining distortion, and cutting ability arise. This study presents the machining distortion characteristics of an Al-Li alloy wing tip in relation to the cutting heat in high-speed machining. A machining experiment was conducted with high-speed machining equipment for an evaluation of the machining distortion characteristics, with each machining stage temperature change of the workpiece machining surface, and the inside and outside temperature changes of the equipment measured. By measuring the amount of distortion of the workpiece before and after machining, the cutting heat was analyzed with regard to its effect on machining distortion in the product.

Effect of Machining Conditions on machining gap in Micro Electrochemical Drilling (미세 전해 구멍 가공에서의 가긍 조건에 따른 가공 간극 변화 특성)

  • Kim, Bo-Hyun;Park, Byung-Jin;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.163-169
    • /
    • 2005
  • Micro hole is ode of basic elements for micro device or micro parts. Micro electrochemical machining (ECM) can be applied to the machining of micro holes less than 50 ${\mu}m$ in diameter, which it is not easy to apply other techniques to. For the machining of passivating metals such as stainless steel, machining conditions should be chosen carefully to prevent a passive layer. The machining conditions also affect the machining resolution, In this paper, machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel.

Selection of Machining Condition in High Speed Machining of STD11 (STD11 금형강의 고속가공에서 가공조건 선정)

  • 이춘만;최치혁;고태조;정종윤;정원지
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.30-38
    • /
    • 2003
  • High-speed machining is one of the most effective technology to enhance productivity especially for hardened die material. High-speed machining can give great advantages for machining of dies and molds. But selection of machining condition is very difficult because of complicated machining mechanism. This paper presents the selection of machining condition in high-speed machining of STD11. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on surface roughness and machining error in Z-direction is discussed to improve machining accuracy.