• Title/Summary/Keyword: Machining Process Control

Search Result 306, Processing Time 0.022 seconds

A Study on the Real-time Micro Control of WEDM Process for the Improvement of Discharging Stability (WEDM 프로세스의 방전 안정성 향상을 위한 실시간 미세제어에 관한 연구)

  • Kwon Shin;Nam Sung-Ho;Yang Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.27-36
    • /
    • 2005
  • Some studies have shown that unstable factors are inherent in WEDM process, causing the instability of the discharging pulse to reach about 40∼60% in normal machining. Transient stability is an important subject in WEDM process since there is a close relationship between stability and machining performance, such as the characteristics of a machined surface, machining speed and problem of instability like wire rupture phenomenon. Among the many machining parameters affecting WEDM machining state, three specific parameters (Vr, Ip, off time ) are major controllable variables that can be applied in transient stability control. And, this research investigates the implementation and analysis of real-time micro control of the discharging stability of WEDM (Wire Electric Discharge Machining) process.

Design of High Speed Spindles Active Monitoring and Control Algorithm (고속 주축의 상태모니터링 및 제어 알고리즘 설계)

  • Choi, Hyun-Jin;Park, Chul-Woo;Bae, Jung-Sub;Ahn, Jeong-Hun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.13-19
    • /
    • 2011
  • In this paper, the active monitoring and control system is developed. This system can monitor the status of high the speed spindle in real time during its processing, and can analyze its influence of dimensional accuracy and processing if any, and can control the machining condition to realize the machining system equipped with active monitoring and self-diagnostic features. Machining experiment was performed on 3 materials Al, Brass and S45C in order to derive the relation between active monitoring and control algorithm by the machining load. In addition, we measured surface roughness of processing specimen along with the data change of spindle rotating speed and conveying speed according to variation of machining load. Based on these experiments, we derived relations for each material that can be applied to the control algorithm to allow self control of the rotating speed and conveying speed according to the machining load.

A study on the adaptive control of process parameters using torque for end milling operation in machining center (Machining Center에서 End Millirh할 때 Torgue에 의한 가공변수의 적응제어에 관한 연구)

  • 박천령;윤문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.889-897
    • /
    • 1986
  • The purpose of this study is to describe the strategy of machining process suitable for developing adaptive control with constraint of NC-machine tool. The algorithm that controls machining process parameters of every sampling time is established for the constraint of torque in machinig center. To prove this AC algorithm, manual AC-unit control test is used for simulating the on-line AC strategy control. Also machining tests are carried out on a CNC-machining center fitted with the ACC system and compared with the simulated results. The practical effectiveness of the ACC systems so discussed and the reduction of machining time are demonstrated with reference to typical models of cutting workpieces. As a typical model, taper and step geometry model are selected. The computer simulation results have a good agreement with the experimental observation and make it possible to develope a NC-machine tool with an on-line ACC system.

Cutting Force Control by Variable Feed and Spindle Speed in Ball-end Milling Process (이송 및 주축속도 가변속에 의한 볼 엔드밀 절삭공정의 절삭력 추적제어)

  • Lee, Chun-Hwan;Yi, Seung-Ug;Lee, Gun-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.73-80
    • /
    • 1993
  • There and two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. In this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

  • PDF

The Control Technology of Cutter Path and Cutter Posture for 5-axis Control Machining (5축가공을 위한 공구경로 및 자세 제어 기술)

  • Hwang, Jong-Dae;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of cutter path and cutter posture at a cutter contact point. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various cutter paths, cutter postures types. Also, in order to increase the efficiency of 5-axis machining, it is necessary to minimize the cutter posture changes and create a continuous cutter path while avoiding interference. This study, by using an MC-space algorithm for interference avoidance and an MB-spline algorithm for continuous control, is intended to create a 5-axis machining cutter path with excellent surface quality and economic feasibility. finally, this study will verify the effectiveness of the suggested method through verification processing.

Real-time Gap Control for Micro-EDM: Application in a Microfactory

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.3-6
    • /
    • 2008
  • Electrical discharge machining (EDM) is one of the most widespread nonconventional machining processes. Recently, a low-power micro-EDM process was introduced using a cylindrical electrode. Since its development, micro-EDM has been applied effectively to micromachining, and because the device setup for this process is simple, it is suitable for a microfactory that minimizes machines to fabricate small products economically in one system. In the EDM process, however, the electrode is also removed along with the workpiece. Therefore, the electrode shape and length vary as machining progresses. In this paper, a control method using a high speed realtime voltage measurement is proposed to regulate the rate and amount of material removed. The proposed method is based on the assumption that the volume of the workpiece removed in a single discharge pulses is nearly constant. The discharge pulses are monitored and controlled to regulate the amount of material removed. For this purpose, we developed an algorithm and apparatus for counting the number of discharge pulses. Electrode wear compensation using pulse number information was applied to EDM milling in a microfactory, in which a slight tilt of the workpiece may occur. The proposed control method improves the machining quality and efficiency by eliminating the inaccuracies caused by electrode wear and workpiece tilt.

Cutting Force Regulation in Milling Process Using Sliding Mode Control (슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어)

  • Lee, Sang-Jo;Lee, Yong-Seok;Go, Jeong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

The Evaluation of Performance of 2-Axis Polishing Robot Attached to Machining Center (머시닝센터 장착형 2축 연마 로봇의 성능평가)

  • 박준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.411-416
    • /
    • 2000
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing process, a polishing robot with w degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. This automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, a new sliding mode control algorithm is applied to the robot. The signal compression method is used to identify polishing robot system. to obtain an effect of 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 axes machining center is divided into data of two types for 3 axes machining center and 2 axes polishing robot. To evaluate polishing performance of the robot. various experiments are carried out.

  • PDF

Wire-tension Control System using Photo-interrupter Sensor and Micro-electrode Fabrication (광단속센서를 이용한 와이어장력 제어장치 및 마이크로전극 제조)

  • Kang, Myung Chang;Lee, Chang Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.28-35
    • /
    • 2013
  • Micro electrical discharge machining (EDM) as a non-contact machining process is very effective for micromachining with a thin electrode because of its low machining reaction force. The micro-electrode machining device has the advantage of maintaining high precision through the whole processes and uses a feeding wire in the thin electrode tool manufacturing process. This study describes the design and evaluation of a micro-electrode machining device using optical photo-interrupter. The electrode was fabricated by reverse electrical discharge machining. The performance of designed system was evaluated to measure tension force according to feed speed of wire. This system for micro electrode fabrication proves the feasibility in the micro-EDM process of the micro holes and parts for industrial applications.

An Algorithm for Single Machine Scheduling Using The Control of Machining Speed (단일공정에서의 가공속도 조절에 의한 생산일정계획)

  • 박찬웅
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This study presents an single machine scheduling algorithm minimize lateness of product by controlling machining speed. Generally, production scheduling uses the information of process planning. But the production scheduling algorithm has not considered the control of machining speed in its procedures. Therefore, the purpose of this study is to consider the machining speed in production scheduling algorithm for efficient production scheduling. Machining time and machining cost required to manufacture a piece of a product are expressed as a unimodal convex function with respect to machining speed, so it has minimal point at minimum time speed or the minimum cost speed. Therefore, because of considering the machining cost, the control of machining speed for the algorithm is executed between minimum speed and maximum speed. An example is demonstrated to explain the algorithm.

  • PDF