• Title/Summary/Keyword: Machining Pressure

Search Result 213, Processing Time 0.024 seconds

A Study on Micro-hole Machining Technology using Ultrasonic vibration (초음파 진동을 이용한 미세구멍 가공기술)

  • 이석우;최헌종;이봉구;최영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.231-234
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric and hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $\textrm{Al}_2\textrm{O}_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Modeling of the Specific Cutting Pressure and Prediction of the Cutting Forces in Face Milling (정면 밀링 가공에서의 비절삭 저항 모델링 및 절삭력 예측)

  • Kim, Kug-Weon;Joo, Jung-Hoon;Lee, Woo-Young;Choi, Sung-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.116-122
    • /
    • 2008
  • In order to establish automation or optimization of the machining process, predictions of the forces in machining are often needed. A new model fur farces in milling with the experimental model based on the specific cutting pressure and the Oxley's predictive machining theory has been developed and is presented in this paper. The specific cutting pressure is calculated according to the definition of the 3 dimensional cutting forces suggested by Oxley and some preliminary milling experiments. Using the model, the average cutting forces and force variation against cutter rotation in milling can be predicted. Milling experimental tests are conducted to verify the model and the predictive results agree well with the experimental results.

A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center (5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구)

  • 장동규;조환영;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

An Experimental Study on the Ultrasonic Machining Characteristics of Engineering Ceramics

  • Kang Ik Soo;Kim Jeong Suk;Seo Yong Wie;Kim Jeon Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.227-233
    • /
    • 2006
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study, alumina $(Al_2O_3)$ was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios of 1:1, 1:3 and 1:5 with different tool shapes and applied static pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 1:1 and static pressure of $2.5kg/cm^2$, maximum material removal rate of $18.97mm^3/min$ was achieved. With mesh number of 600 SiC abrasives and static pressure of $3.0kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing (최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구)

  • Won, Jong-Koo;Lee, Eun-Sang;Lee, Sang-Gyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

Experimental Study and Process Optimization for Vibration-assisted Dry Micro-WEDM (진동을 이용한 건식 마이크로-WEDM 에 대한 실험적 연구 및 프로세스 최적화)

  • Hoang, Kien Trung;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • This paper presents an experimental study of a vibration-assisted dry micro-wire electrical discharge machining (${\mu}$-WEDM) utilized in high precision and micro-manufacturing area. The assisted vibration was applied to the workpiece using a piezoelectric actuator, and high pressure air was injected directly into the machining gap through a nozzle. Investigation experiments were performed to estimate the importance of input parameters and it was observed from experiment results that the width (kerf) of the cutting slot and the machining time were significantly affected by the air injection pressure and input energy. Moreover, it was also observed that there exists an optimal relationship between the machining time and input parameters including the air pressure and vibration frequency and amplitude. Central composite design based experiments were also carried out, and empirical models of the machining time and cutting slot kerf have been developed using the response surface methodology to analyze and optimize the process.

Analysis of Environmental Factors Affecting the Machining Accuracy (가공정밀도에 영향을 미치는 환경요소 분석)

  • Kim, Young Bok;Lee, Wee Sam;Park, June;Hwang, Yeon;Lee, June Key
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

A study on the development of polishing robot system attached to machining center for curved surface die (머시닝센터 장착형 곡면금형 연마용 로봇 시스템 개발에 관한 연구)

  • 하덕주;이민철;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1312-1315
    • /
    • 1996
  • Polishing work for a curved surface die demands simple and repetitive operations and requires much time while it also demands high precision. Therefore it is operated by skilled worker in handiwork. But workers avoid polishing work gradually because of the poor environments such as dust and noise. In order to reduce the polishing time and to alleviate the problem of shortage of skilled workers, researches for automation of polishing have been pursued in the developed countries such as Japan. In this research we develop a polishing robot with 2 degrees of freedom motion and pneumatic system, and attach it to machining center with 3 degrees of freedom to form an automatic polishing system which keeps the polishing tool vertically on the surface of die and maintains constant pneumatic pressure. The developed polishing robot is controlled by real time sliding mode control using DSP(digital signal processor). A synchronization between machining center and polishing robot is accomplished by using M code of machining center. A performance experiment for polishing work is executed by the developed polishing robot.

  • PDF

A Study on the Ultrasonic Machining Characteristics of Alumina Ceramics (알루미나 세라믹의 초음파가공 특성 연구)

  • Kang, Ik-Soo;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho;Seo, Yong-Wie
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study alumina($Al_2O_3$) was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios (abrasives water by weight) of 11, 13 and 15 with different tool shapes and applied pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 11 and static pressure of $25kg/cm^2$, maximum material removal rate of $18.97mm^3/mm$ was achieved with mesh number of 600 SiC abrasives and static pressure of $30kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

  • PDF

A Study of the Effects of Pressure Velocity and Fluid Viscosity in Abrasive Machining Process (입자연마가공에서의 압력 속도 및 유체점도의 영향에 대한 고찰)

  • Yang, Woo-Yul;Yang, Ji-Chul;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Interest in advanced machining process such as AJM(abrasive jet machining) and CMP(chemical-mechanical polishing) using micro/nano-sized abrasives has been on the increasing demand due to wide use of super alloys, composites, semiconductor and ceramics, which are difficult to or cannot be processed by traditional machining methods. In this paper, the effects of pressure, wafer moving velocity and fluid viscosity were investigated by 2-dimensional finite element analysis method considering slurry fluid flow. From the investigation, it could be found that the simulation results quite corresponded well to the Preston's equation that describes pressure/velocity dependency on material removal. The result also revealed that the stress and corresponding material removal induced by the collision of particle may decrease under relatively high wafer moving speed due to the slurry flow resistance. In addition, the increase in slurry fluid viscosity causes the reduction of material removal rate. It should be noted that the viscosity effect can vary with the shape of abrasive particle.