• 제목/요약/키워드: Machining Deformation

검색결과 230건 처리시간 0.025초

공작기계 원점 열변형오차의 모델링 및 보상제어 (Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools)

  • 정성종
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF

페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석 (Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules)

  • 김석일;이원재;조순주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1008-1013
    • /
    • 2003
  • This paper concerns the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system consisted of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

  • PDF

페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석 (Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules)

  • 김석일;박천홍;조순주
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.896-903
    • /
    • 2004
  • This paper proposes the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high-precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system composed of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

다구찌 방법을 이용한 고속주축의 강성 개선 (Improvement of a Stiffness for High-Speed Spindle Using the Taguchi Method)

  • 임정숙;정원지;이춘만;이정환
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.127-133
    • /
    • 2007
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. To improve the competition power of price to quality, spindle design is very important. Because it possesses over 10 percent of machine tool's price. The latest machine tools have rotational frequency and excellent about might and precision cutting. So it requires static and dynamic strength in the load aspect. In conclusion, the deformation of the spindle end have to extremely small displacement in static and dynamic load. In this study, On the assumption that the bearings that are supporting 24,000rpm high-speed spindle are selected in the most optimum condition, the natural frequency and deformation of the spindle end is obtained by FEM mode analysis. The Taguchi Method was used to draw optimized condition of bearing position and it's stiffness.

탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (I) - 가우시안 파워밀도 분포의 레이저 열원을 이용한 표면변태경화 특성 - (Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (I) - Characteristics of Surface Transformation Hardening by Laser Heat Source with Gaussian Intensify distribution -)

  • 김종도;강운주
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.78-84
    • /
    • 2007
  • Laser Material Processing has been replaced the conventional machining systems - cutting, drilling, welding and surface modification and so on. Especially, LTH(Laser Transformation Hardening) process is one branch of the laser surface modification process. Conventionally, some techniques like a gas carburizing and nitriding as well as induction and torch heating have been used to harden the carbon steels. But these methods not only request post-machining resulted from a deformation but also have complex processing procedures. Besides, LTH process has some merits as : 1. It is easy to control the case depth because of output(laser power) adjustability. 2. It is able to harden the localized and complicated a.ea and minimize a deformation due to a unique property of a localized heat source. 3. An additional cooling medium is not required due to self quenching. 4. A prominent hardening results can be obtained. This study is related to the surface hardening of the rod-shaped carbon steel applied to the lathe based complex processing mechanism, a basic behavior of surface hardening, hardness distribution and structural characteristics in the hardened zone.

3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

  • Seno, Takashi;Ohtake, Yutaka;Kikuchi, Yuji;Saito, Noriaki;Suzuki, Hiromasa;Nagai, Yukie
    • Journal of Computational Design and Engineering
    • /
    • 제2권2호
    • /
    • pp.96-104
    • /
    • 2015
  • Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD) data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

2 차원 평판가공법을 이용한 고세장비 미세 격벽어레이구조물 가공 (Study on Machining High-Aspect Ratio Micro Barrier Rib Array Structures using Orthogonal Cutting Method)

  • 박언석;최환진;김한희;전은채;제태진
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1272-1278
    • /
    • 2012
  • The micro barrier rip array structures have been applied in a variety of areas including as privacy films, micro heat sinks, touch panel and optical waveguide. The increased aspect ratio (AR) of barrier rip array structures is required in order to increase the efficiency and performance of these products. There are several problems such as burr, defect of surface roughness and deformation and breakage of barrier rip structure with machining high-aspect ratio micro barrier rip array structure using orthogonal cutting method. It is essential to develop technological methods to solve these problems. The optimum machining conditions for machining micro barrier rip array structures having high-aspect ratio were determined according to lengths ($200{\mu}m$ and $600{\mu}m$) and shape angles ($2.89^{\circ}$ and $0^{\circ}$) of diamond tool, overlapped cutting depths ($5{\mu}m$ and $10{\mu}m$), feed rates (100 mm/s) and three machining processes. Based on the optimum machining conditions, micro barrier rib array structures having aspect ratio 30 was machined in this study.

머시닝 센터 가공 교육 중 바이스 압축력으로 인한 형상 변형량에 관한 연구 (Numerical Analysis for Machining Center Milling Education of Deformation by Vise Stress to Minimize)

  • 김진우;봉하윤
    • 실천공학교육논문지
    • /
    • 제7권2호
    • /
    • pp.119-123
    • /
    • 2015
  • ABS 소재는 가공이 쉽고 충격과 열에 대한 내성이 강해 가전제품뿐만 아니라 자동차용 내외장재 금속 대체용으로도 많이 사용되고 있다. 이러한 특성으로 ABS의 수요가 늘어감에 따라 ABS를 이용한 가공교육도 그 중요성이 커지고 있다. 그 교육의 일환으로 전국 기능대회 및 지방 기능대회 금형 가공 부분에서 ABS 소재가 쓰이고 있다. 이때 ABS 소재를 이용한 가공에 있어서 ABS 소재를 고정하는 바이스의 힘은 가공 후 최종 형상에 영향을 미치게 된다. 하지만 가공 교육 작업 주의사항이나 지시사항 등에 이에 관한 정확한 명시가 되어있지 않은 상황이다. 따라서 이번 연구에서는 ABS 소재를 이용한 가공 교육에 있어서 교육에 사용하는 기초 형상에 대한 바이스의 고정시키는 힘이 가공 후 최종 형상에 미치는 영향을 알아보고, ABS 소재의 가공 교육 시 적합한 바이스 주의사항을 제시하고자 한다.

정밀가공용 고속 자동선반 베드의 정하중 및 공진주파수 해석 (Analysis on Static Load and Resonance Frequency of Bed in High-speed Automatic Lathe for Precision Machining)

  • 하주환;이윤철;주강우;조은정;이영식;이재권;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.32-38
    • /
    • 2017
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in high-speed automatic lathe for precision machining. An automatic lathe operating at about 25,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 0.14MPa, the maximum deformation amount was $17.9{\mu}m$, and the natural frequency was 364.72Hz. The resonance frequency was calculated as 718Hz, and the stability was confirmed by being in the range of 400Hz or more, which is the processing condition.

  • PDF

선삭 및 호빙 가공용 자동선반 베드의 정하중 및 공진주파수 해석 (Analysis on Static Load and Resonance Frequency of Bed in Turning and Hobbing Automatic Lathe for Precision Machining)

  • 하주환;이윤철;조은정;이영식;이재권;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제17권1호
    • /
    • pp.66-70
    • /
    • 2018
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in turning and hobbing automatic lathe for precision machining. An automatic lathe operating at about 12,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 14.52 MPa, the maximum deformation amount was $12.15{\mu}m$, and the natural frequency was 189.43 Hz. The resonance frequency was calculated as 500 Hz, and the stability was confirmed by being in the range of 200 Hz or more, which is the processing condition.