• 제목/요약/키워드: Machining Accuracy According

검색결과 79건 처리시간 0.02초

파워바이스 증력장치 최적설계에 관한 연구 (A Study on the Optimum Design of Power Vice-Strengthening Device)

  • 이경일;정윤수;김재열
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.69-74
    • /
    • 2017
  • In the current machining industry, machining precision is necessary and machining is being carried out. In this ultra-precision machining industry, the fixation of the workpiece is very important and the degree of machining depends on the degree of fixation of the workpiece. In ultra-precision machining, various methods, such as using a vise chuck or the like and using bolt nut coupling, are used for fixing a workpiece to an existing machine tool. In particular, when the precision gripping force of the jig is insufficient during machining of the ultra-precision mold parts, the machining material shakes due to the vibration or friction, and the machining precision is lowered. In the ultra-precision machining of power transmission parts, such as gears, the accuracy of the product is then determined. In addition, the amount of heat generated during machining has a significant effect on the machining accuracy. This is because the vibration value changes according to the grasp force of the jig that fixes the workpiece, and the change in the calorific value due to the change in the main shaft rotation speed of the ultra-precision machining. The increase in the spindle rotation speed during machining decreased the heat generation during machining, and the machining accuracy was also good, and it was confirmed that the machining heat changed according to the fixed state of the workpiece and the machining accuracy also changed. In this study, we try to optimize the driving part of the power vise by using structural analysis, rather than the power vise, using the basic mechanical-type power unit.

가공정밀도에 영향을 미치는 환경요소 분석 (Analysis of Environmental Factors Affecting the Machining Accuracy)

  • 김영복;이의삼;박준;황연;이준기
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

정밀 공작기계의 회전 영역별 진동 및 불평형량 감소에 따른 가공 정밀도 영향에 관한 연구 (A Study on the Machining Accuracy according to Vibration and Unbalance Decrease in Rotational Speed Domains of High Precision Machine Tools)

  • 손덕수;김상화;박일환
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.121-126
    • /
    • 2013
  • Precision machine tools for high dignity cutting are needed for efforts to improve machining accuracy. However, there are many factors to improve machining accuracy. This study investigated how machining accuracy changes when variation and unbalance amount in rotational speed domain is decreased. Machining accuracy of initial machine tools depends on manufacturing and assembly of parts such as bearing. And then, vibration and noise vary with volume of unbalance amount when it is rotation, so it effects unbalance amount. Also vibration and noise increased by unbalance shorten spindle's life and it especially makes worse boring accuracy. Therefore, this study studied the change of roundness and cylindricity of workpiece when it decreases variation and unbalance in rotational speed domain.

머시닝센터 평면가공 시 가공횟수에 따른 치수정밀도 특성에 관한 연구 (A Study on Characteristics of Dimensional Accuracy using Planning Number of Machining in Machining Center)

  • 양용모
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.61-67
    • /
    • 2018
  • The face milling cutter, which is mainly used for the face milling, is used to cut the Carbon steel(SM20C) in the machining center for 5 times and 10 times respectively. This study clarify the dimensional accuracy characteristics according to the number of fine machining varied the condition of cutting depth, table feed speed and spindle speed. Cutting depth is varied 0.05~0.2mm, table feed speed is varied 0.05~0.2mm/min and spindle speed is varied 1500~2500rpm. As a result, the dimensional accuracy was stable 6 times machining with table feed speed 150mm/min and 10 times machining with table speed 100mm/min and cutting depth 0.05mm regardless times of machining.

가공 인자에 다른 미세 전해 가공 속도 변화 연구 (Study on Machining Speed according to Parameters in Micro ECM)

  • 권민호;박민수;신홍식;주종남
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.308-314
    • /
    • 2011
  • In micro electrochemical machining (micro ECM), machining conditions have been determined to maintain a small side gap and to machine a workpiece stably However, machining speed is slow. To improve machining speed while maintaining the form accuracy, the paper investigates machining parameters such as pulse amplitude, duty ratio, pulse on-time, and the electrolyte's temperature and concentration. The experiment in this study shows that the electrolyte's concentration is the key factor that can reduce machining time while maintaining the form accuracy Micro square columns were fabricated to confirm the machining parameters' effects.

고속가공에서 공구형상 변화에 따른 가공성평가 (Machinability evaluation according to variation of tool shape in high speed machining)

  • 하동근;강명창;김정석;김광호;강호연
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.346-351
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining field. Because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining is not close behind that of machining tool. So in this study, we made 4 types flat end mill for obtaining data according to tool shape. Especially, we concentrated in helix angle and number of cutting edge. First we confirmed cutting condition by several experiments and measuring cutting force, tool life, tool wear and chip shape according to cutting length. In results, we acquired the fact that 45 degree helix angle and six cutting edge tool is suitable for high speed machining.

  • PDF

기상측정시스템과 오차보정을 이용한 가공정밀도 향상 (Machining Accuracy Improvement by On Machine Part Measurement and Error Compensation)

  • 최진필;민병권;이상조
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.34-41
    • /
    • 2003
  • This paper suggests a methodology fur improving the machining accuracy by compensating for the machining errors based on on-machine measurement process. Probing errors and machine tool errors included in the measurement data were calibrated or compensated to obtain the actual machining errors. Machine tool errors were modeled in forward and backward directions according to the axis movement direction to consider the effects of backlash errors on the measurement data, and model parameters were determined by measuring a cube array artifact. A rectangular workpiece was machined and then measured with a touch probe as a verification experiment. Machining experiments showed that the machining errors were reduced to within the designated tolerance after compensating for the actual machining errors by modifying the original footpath for the next-step machining.

초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구 (A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining)

  • 이경일;김재열
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

고속가공기용 HSK 툴링시스템의 주축회전속도에 따른 응력분포특성 (The Stress Distribution Characteristics of HSK Tooling System According to Spindle Speed)

  • 구민수;김정석;강익수;박진효;이종환;김기태
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.852-858
    • /
    • 2010
  • Recently, the high-tech industries, such as aerospace industry, auto industry, and electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, stress distribution characteristics of the HSK tooling System is analyzed according to the spindle speed. In order that, the mechanism and the force amplification principle of HSK tooling system are analyzed. The HSK tooling system is modelled by using a 3D modeling/design program. Then stress distribution characteristics of HSK tooling system are analyzed according to spindle speed by using the finite element analysis.

고속 주축의 상태모니터링 및 제어 알고리즘 설계 (Design of High Speed Spindles Active Monitoring and Control Algorithm)

  • 최현진;박철우;배정섭;안정훈;최성대
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.13-19
    • /
    • 2011
  • In this paper, the active monitoring and control system is developed. This system can monitor the status of high the speed spindle in real time during its processing, and can analyze its influence of dimensional accuracy and processing if any, and can control the machining condition to realize the machining system equipped with active monitoring and self-diagnostic features. Machining experiment was performed on 3 materials Al, Brass and S45C in order to derive the relation between active monitoring and control algorithm by the machining load. In addition, we measured surface roughness of processing specimen along with the data change of spindle rotating speed and conveying speed according to variation of machining load. Based on these experiments, we derived relations for each material that can be applied to the control algorithm to allow self control of the rotating speed and conveying speed according to the machining load.