• Title/Summary/Keyword: Machine-to-machine communications

Search Result 352, Processing Time 0.028 seconds

Location-based Frequency Interference Management Scheme Using Fingerprinting Localization Algorithms (Fingerprinting 무선측위 알고리즘을 이용한 영역 기반의 주파수 간섭 관리 기법)

  • Hong, Aeran;Kim, Kwangyul;Yang, Mochan;Oh, Sunae;Jung, Hongkyu;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.901-908
    • /
    • 2012
  • In an intelligent automated manufacturing environment, an administrator may use M2M (Machine-to-Machine) communication to recognize machine movement and the environment, as well as to respond to any potential dangers. However, commonly used wireless protocols for this purpose such WLAN (Wireless Local Area Network), ZigBee, and Bluetooth use the same ISM (Industrial Science Medical) band, and this may cause frequency interference among different devices. Moreover, an administrator is frequently exposed to dangerous conditions as a result of being surrounded by densely distributed moving machines. To address this issue, we propose in this paper to employ a location-based frequency interference management using fingerprinting scheme in industrial environments and its advanced localization schemes based on k-NN (Nearest Neighbor) algorithms. Simulation results indicate that the proposed schemes reduce distance error, frequency interference, and any potential danger may be responded immediately by continuous tracing of the locations.

A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography (한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법)

  • Kwon, Ju-Won;Kang, Ho-Kyung;Ro, Yong-Man;Kim, Sung-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.

Development of an impact Identification Program in Mathematical Education Research Using Machine Learning and Network (기계학습과 네트워크를 이용한 수학교육 연구의 영향력 판별 프로그램 개발)

  • Oh, Se Jun;Kwon, Oh Nam
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.21-45
    • /
    • 2023
  • This study presents a machine learning program designed to identify impactful papers in the field of mathematics education. To achieve this objective, we examined the impact of papers from a scientific econometrics perspective, developed a mathematics education research network, and defined the impact of mathematics education research using PageRank, a network centrality index. We developed a machine learning model to determine the impact of mathematics education research and identified the journals with the highest percentage of impactful articles to be the Journal for Research in Mathematics Education (25.66%), Educational Studies in Mathematics (22.12%), Zentralblatt für Didaktik der Mathematik (8.46%), Journal of Mathematics Teacher Education (5.8%), and Journal of Mathematical Behaviour (5.51%). The results of the machine learning program were similar to the findings of previous studies that were read and evaluated qualitatively by experts in mathematics education. Significantly, the AI-assisted impact evaluation of mathematics education research, which typically requires significant human resources and time, was carried out efficiently in this study.

Recognition Direction Improvement of Target Object for Machine Vision based Automatic Inspection (머신비전 자동검사를 위한 대상객체의 인식방향성 개선)

  • Hong, Seung-Beom;Hong, Seung-Woo;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1384-1390
    • /
    • 2019
  • This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This enables the automatic machine vision inspection to detect the image of the inspection object regardless of the position and orientation of the object, eliminating the need for a separate inspection jig and improving the automation level of the inspection process. This study develops the technology and method that can be applied to the wire harness manufacturing process as the inspection object and present the result of real system. The results of the system implementation was evaluated by the accredited institution. This includes successful measurement in the accuracy, detection recognition, reproducibility and positioning success rate, and achievement the goal in ten kinds of color discrimination ability, inspection time within one second and four automatic mode setting, etc.

Small-cell Resource Partitioning Allocation for Machine-Type Communications in 5G HetNets (5G 이기종 네트워크 환경에서 머신타입통신을 위한 스몰셀 자원 분리 할당 방법)

  • Ilhak Ban;Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2023
  • This paper proposes a small cell resource partitioning allocation method to solve interference to machine type communication devices (MTCD) and improve performance in 5G heterogeneous networks (HetNet) where macro base station (MBS) and many small cell base stations (SBS) are overlaid. In the 5G HetNet, since various types of MTCDs generate data traffic, the load on the MBS increases. Therefore, in order to reduce the MBS load, a cell range expansion (CRE) method is applied in which a bias value is added to the received signal strength from the SBS and MTCDs satisfying the condition is connected to the SBS. More MTCDs connecting to the SBS through the CRE will reduce the load on the MBS, but performance of MTCDs will degrade due to interference, so a method to solve this problem is needed. The proposed small cell resource partitioning allocation method allocates resources with less interference from the MBS to mitigate interference of MTCDs newly added in the SBS with CRE, and improve the overall MTCD performace using separating resources according to the performance of existing MTCDs in the SBS. Through simulation results, the proposed small cell resource partitioning allocation method shows performance improvement of 21% and 126% in MTCDs capacity connected to MBS and SBS respectively, compared to the existing resource allocation methods.

Prediction of the number of public bicycle rental in Seoul using Boosted Decision Tree Regression Algorithm

  • KIM, Hyun-Jun;KIM, Hyun-Ki
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • The demand for public bicycles operated by the Seoul Metropolitan Government is increasing every year. The size of the Seoul public bicycle project, which first started with about 5,600 units, increased to 3,7500 units as of September 2021, and the number of members is also increasing every year. However, as the size of the project grows, excessive budget spending and deficit problems are emerging for public bicycle projects, and new bicycles, rental office costs, and bicycle maintenance costs are blamed for the deficit. In this paper, the Azure Machine Learning Studio program and the Boosted Decision Tree Regression technique are used to predict the number of public bicycle rental over environmental factors and time. Predicted results it was confirmed that the demand for public bicycles was high in the season except for winter, and the demand for public bicycles was the highest at 6 p.m. In addition, in this paper compare four additional regression algorithms in addition to the Boosted Decision Tree Regression algorithm to measure algorithm performance. The results showed high accuracy in the order of the First Boosted Decision Tree Regression Algorithm (0.878802), second Decision Forest Regression (0.838232), third Poison Regression (0.62699), and fourth Linear Regression (0.618773). Based on these predictions, it is expected that more public bicycles will be placed at rental stations near public transportation to meet the growing demand for commuting hours and that more bicycles will be placed in rental stations in summer than winter and the life of bicycles can be extended in winter.

Linear SVM-Based Android Malware Detection and Feature Selection for Performance Improvement (선형 SVM을 사용한 안드로이드 기반의 악성코드 탐지 및 성능 향상을 위한 Feature 선정)

  • Kim, Ki-Hyun;Choi, Mi-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.738-745
    • /
    • 2014
  • Recently, mobile users continuously increase, and mobile applications also increase As mobile applications increase, the mobile users used to store sensitive and private information such as Bank information, location information, ID, password on their mobile devices. Therefore, recent malicious application targeted to mobile device instead of PC environment is increasing. In particular, since the Android is an open platform and includes security vulnerabilities, attackers prefer this environment. This paper analyzes the performance of malware detection system applying linear SVM machine learning classifier to detect Android malware application. This paper also performs feature selection in order to improve detection performance.

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

A Scheduling Problem to Minimize Weighted Completion Time in the Two-stage Assembly-type Flowshop (두 단계 조립시스템에서 총 가중완료시간을 최소화하는 일정계획문제)

  • Yoon, Sang Hum;Lee, Ik Sun;Lee, Jong Hyup
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.254-264
    • /
    • 2007
  • This paper considers a scheduling problem to minimize the total weighted completion time in the two-stage assembly-type flowshop. The system is composed of multiple fabrication machines in the first stage and a final-assembly machine in the second stage. Each job consists of multiple components, each component is machined on the fabrication machine specified in advance. The manufactured components of each job are subsequently assembled into a final product on the final-assembly machine. The objective of this paper is to find the optimal schedule minimizing the total weighted completion time of jobs. Three lower bounds are derived and tested in a branch-and-bound (B&B) Procedure. Also, three heuristic algorithms are developed based on the greedy strategies. Computational results show that the proposed B&B procedure is more efficient than the previous work which has considered the same problem as this paper.

Comparative analysis of model performance for predicting the customer of cafeteria using unstructured data

  • Seungsik Kim;Nami Gu;Jeongin Moon;Keunwook Kim;Yeongeun Hwang;Kyeongjun Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.485-499
    • /
    • 2023
  • This study aimed to predict the number of meals served in a group cafeteria using machine learning methodology. Features of the menu were created through the Word2Vec methodology and clustering, and a stacking ensemble model was constructed using Random Forest, Gradient Boosting, and CatBoost as sub-models. Results showed that CatBoost had the best performance with the ensemble model showing an 8% improvement in performance. The study also found that the date variable had the greatest influence on the number of diners in a cafeteria, followed by menu characteristics and other variables. The implications of the study include the potential for machine learning methodology to improve predictive performance and reduce food waste, as well as the removal of subjective elements in menu classification. Limitations of the research include limited data cases and a weak model structure when new menus or foreign words are not included in the learning data. Future studies should aim to address these limitations.