• Title/Summary/Keyword: Machine vision inspection

Search Result 241, Processing Time 0.028 seconds

Development of Stamping Die Quality Inspection System Using Machine Vision (머신 비전을 이용한 금형 품질 검사 시스템 개발)

  • Hyoup-Sang Yoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.181-189
    • /
    • 2023
  • In this paper, we present a case study of developing MVIS (Machine Vision Inspection System) designed for exterior quality inspection of stamping dies used in the production of automotive exterior components in a small to medium-sized factory. While the primary processes within the factory, including machining, transportation, and loading, have been automated using PLCs, CNC machines, and robots, the final quality inspection process still relies on manual labor. We implement the MVIS with general-purpose industrial cameras and Python-based open-source libraries and frameworks for rapid and low-cost development. The MVIS can play a major role on improving throughput and lead time of stamping dies. Furthermore, the processed inspection images can be leveraged for future process monitoring and improvement by applying deep learning techniques.

Visual Inspection Method Which Improves Accuracy By using Histogram Transformation (히스토그램 변환을 사용하여 정확도를 향상시킨 외관 Vision 검사 방법)

  • Han, Kwang-Hee;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.58-63
    • /
    • 2009
  • The appearance inspection of various electronic products and parts was executed by the eyesight of human. The appearance inspection is applied to the most electronic component of LCD Panel, flexible PCB and remote control. If the appearance of electronic products of small and minute size is inspected by the eyesight of human, we can't expect the stable inspection result because inspection result is changed by condition of physical and spirit of the checker. Therefore currently machine vision systems are used to many appearance inspection fields instead of inspection by human. The many problems of inspection by the checker are not occurred in machine vision circumstance. However, the inspection by automatic machine vision system is mainly influenced by illumination of workplace. In this paper, we propose a histogram transform method for improving accuracy of machine visual inspection.

LED Die Bonder Inspection System Using Integrated Machine Visions (Integrated Machine Vision을 이용한 LED Die Bonder 검사시스템)

  • Cho, Yong-Kyu;Ha, Seok-Jae;Kim, Jong-Su;Cho, Myeong-Woo;Choi, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2624-2630
    • /
    • 2013
  • In LED chip packaging, die bonding is a very important process which fixes the LED chip on the lead flame to provide enough strength for the next process. During the process, inspection processes are very important to detect exact locations of dispensed epoxy dots and to determine bonding status of dies whether they are lies at exact positions with sufficient bonding strength. In this study, a useful machine vision based inspection system is proposed for the LED die bonder. In the proposed system, 2 cameras are used for epoxy dot position detection and 2 cameras are sued for die attaching status determination. New vision processing algorithm is proposed, and its efficiency is verified through required field experiments. Measured position error is less than $X:-29{\mu}m$, $Y:-32{\mu}m$ and rotation error:$3^{\circ}$ using proposed vision algorithm. It is concluded that the proposed machine vision based inspection system can be successfully implemented on the developed die bonding system.

A Study on the Development of Inspection System of SMD Mounted on Cream Solder Using Machine Vision (머신비젼을 이용한 크림솔더상에 장착된 SMD의 검사시스템 개발에 관한 연구)

  • Shm, Dong-Won;Park, Kyoung-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • This paper presents the development of the Inspection machine for SMD mounted on cream solder of PCB. There are mounting errors of SMD such as misalignment, missing part, wrong orientation, wrong polarity and so on. The main hardware of the system consists of a machine vision part and a motion control part. Operating software has been developed in GUI environment to help user convenience. The Inspection Jobs consist of two procedures, that is, creation of the inspection reference data and automatic inspection. The Inspection reference data has a tree structure of linked list including PCB information, blocks, components, windows, and inspection methods. This paper presents versatile inspection methods which include a section length method, a projection method and histogram method. Therefore, user can choose the suitable procedure for various components. Finally, the automatic Inspection procedure using the reference data checks the mounting errors of components.

  • PDF

Development of Machine Vision System based on PLC (PLC 기반 머신 비전 시스템 개발)

  • Lee, Sang-Back;Park, Tae-Hyoung;Han, Kyung-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.741-749
    • /
    • 2014
  • This paper proposes a machine vision module for PLCs (Programmable Logic Controllers). PLC is the industrial controller most widely used in factory automation system. However most of the machine vision systems are based on PC (Personal Computer). The machine vision system embedded in PLC is required to reduce the cost and improve the convenience of implementation. In this paper, we newly propose a machine vision module based on PLC. The image processing libraries are implemented and integrated with the PLC programming tool. In order to interface the libraries with ladder programming, the ladder instruction set was also designed for each vision library. By use of the developed system, PLC users can implement vision systems easily by ladder programming. The developed system was applied to sample inspection system to verify the performance. The experimental results show that the proposed system can reduce the cost of installing as well as increase the ease-of-implementation.

A Study on the Control Characteristics of Line Scan Light Source for Machine Vision Line Scan Camera (머신 비전 라인 스캔 카메라를 위한 라인 스캔 광원의 제어 특성에 관한 연구)

  • Kim, Tae-Hwa;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.371-381
    • /
    • 2021
  • A machine vision inspection system consists of a camera, optics, illumination, and image acquisition system. Especially a scanning system has to be made to measure a large inspection area. Therefore, a machine vision line scan camera needs a line scan light source. A line scan light source should have a high light intensity and a uniform intensity distribution. In this paper, an offset calibration and slope calibration methods are introduced to obtain a uniform light intensity profile. Offset calibration method is to remove the deviation of light intensity among channels through adding intensity difference. Slope calibration is to remove variation of light intensity slope according to the control step among channels through multiplying slope difference. We can obtain an improved light intensity profile through applying offset and slope calibration simultaneously. The proposed method can help to obtain clearer image with a high precision in a machine vision inspection system.

Detection of Object Images for Automatic Inspection based on Machine Vision (머쉰비전기반 자동검사를 위한 대상 이미지 검출)

  • Hong, Seung-woo;Hong, Seung-beom;Lee, Kyou-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.211-213
    • /
    • 2019
  • This paper proposes an image detection method, which can detect images regardless of the location and the direction of an image, required for automatic inspection based on machine vision technologies. A cable harness is considered in this paper as an inspection object, and implementation results of a technology of being applicable to a real cable harness production process is presented.

  • PDF

Implementation of Line Scan Camera based Training Equipment for Technical Training of Automated Visual Inspection System (자동 시각 검사 시스템 기술훈련을 위한 라인스캔 카메라 기반의 실습장비 제작)

  • Ko, Jin-Seok;Mu, Xiang-Bin;Rheem, Jae-Yeol
    • Journal of Practical Engineering Education
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • The automated visual inspection system (machine vision system) for quality assurance is important factory automation equipment in the manufacturing industries, such as display, semiconductor, etc. There is a lot of demand for the machine vision engineers. However, there are no technical training courses for machine vision technologies in vocational schools, colleges and universities. In this paper, we present the implementation of line scan camera based equipment for technical training of the automated visual inspection system. The training system consists of the X-Y stage which is widely used in machine vision industries and its variable image resolution are set to $10-30{\mu}m$. Additionally, this training system can attach the industrial illumination, either the direct illuminator or coaxial illuminator, for verifying the effect of illuminations. This means that the trainee can have a practical training in various equipment conditions and the training system is similar to the automated visual inspection system in industries.

A study on the automatic wafer alignment in semiconductor dicing (반도체 절단 공정의 웨이퍼 자동 정렬에 관한 연구)

  • 김형태;송창섭;양해정
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.105-114
    • /
    • 2003
  • In this study, a dicing machine with vision system was built and an algorithm for automatic alignment was developed for dual camera system. The system had a macro and a micro inspection tool. The algorithm was formulated from geometric relations. When a wafer was put on the cutting stage within certain range, it was inspected by vision system and compared with a standard pattern. The difference between the patterns was analyzed and evaluated. Then, the stage was moved by x, y, $\theta$ axes to compensate these differences. The amount of compensation was calculated from the result of the vision inspection through the automatic alignment algorithm. The stage was moved to the compensated position and was inspected by vision for checking its result again. Accuracy and validity of the algorithm was discussed from these data.