• Title/Summary/Keyword: Machine teaming

Search Result 46, Processing Time 0.023 seconds

Manned-Unmanned Teaming Air-to-Air Combat Tactic Development Using Longshot Unmanned Aerial Vehicle (롱샷 무인기를 활용한 유무인 협업 공대공 전술 개발)

  • Yoo, Seunghoon;Park, Myunghwan;Hwang, Seongin;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.64-72
    • /
    • 2021
  • Manned-unmanned teaming can be a very promising air-to-air combat tactic since it can maximize the advantage of combining human insight with the robustness of the machine. The rapid advances in artificial intelligence and autonomous control technology will speed up the development of manned-unmanned teaming air-to-air combat system. In this paper, we introduce a manned-unmanned teaming air-to-air combat tactic which is composed of a manned aircraft and an UAV. In this tactic, a manned aircraft equipped with radar is functioning both as a sensor to detect the hostile aircraft and as a controller to direct the UAV to engage the hostile aircraft. The UAV equipped with missiles is functioning as an actor to engage the hostile aircraft. We also developed a combat scenario of executing this tactic where the manned-unmanned teaming is engaging a hostile aircraft. The hostile aircraft is equipped with both missiles and radar. To demonstrate the efficiency of the tactic, we run the simulation of the scenario of the tactic. Using the simulation, we found the optimal formation and maneuver for the manned-unmanned teaming where the manned-unmanned teaming can survive while the hostile aircraft is shot-downed. The result of this study can provide an insight to how manned aircraft can collaborate with UAV to carry out air-to-air combat missions.

Development of Polynomial Based Response Surface Approximations Using Classifier Systems (분류시스템을 이용한 다항식기반 반응표면 근사화 모델링)

  • 이종수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

A Modified Deterministic Boltzmann Machine Learning Algorithm for Networks with Quantized Connection (양자화 결합 네트워크를 위한 수정된 결정론적 볼츠만머신 학습 알고리즘)

  • 박철영
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.62-67
    • /
    • 2002
  • From the view point of VLSI implementation, a new teaming algorithm suited for network with quantized connection weights is desired. This paper presents a new teaming algorithm for the DBM(deterministic Boltzmann machine) network with quantized connection weight. The performance of proposed algorithm is tested with the 2-input XOR problem and the 3-input parity problem through computer simulations. The simulation results show that our algorithm is efficient for quantized connection neural networks.

  • PDF

Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine (지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교)

  • Hwang, Doo-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1035-1042
    • /
    • 2008
  • The support vector machine, as a binary classifier, is known to surpass the other classifiers only in binary classification problems through the various experiments. Even though its theory is based on the maximal margin classifier, the support vector machine approach cannot be easily extended to the multi-classification problems. In this paper, we review the extension techniques of the support vector machine toward the multi-classification and do the performance comparison. Depending on the data decomposition of the training data, the support vector machine is easily adapted for a multi-classification problem without modifying the intrinsic characteristics of the binary classifier. The performance is evaluated on a collection of the benchmark data sets and compared according to the selected teaming strategies, the training time, and the results of the neural network with the backpropagation teaming. The experiments suggest that the support vector machine is applicable and effective in the general multi-class classification problems when compared to the results of the neural network.

  • PDF

A Hybrid of Rule based Method and Memory based Loaming for Korean Text Chunking (한국어 구 단위화를 위한 규칙 기반 방법과 기억 기반 학습의 결합)

  • 박성배;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.369-378
    • /
    • 2004
  • In partially free word order languages like Korean and Japanese, the rule-based method is effective for text chunking, and shows the performance as high as machine learning methods even with a few rules due to the well-developed overt Postpositions and endings. However, it has no ability to handle the exceptions of the rules. Exception handling is an important work in natural language processing, and the exceptions can be efficiently processed in memory-based teaming. In this paper, we propose a hybrid of rule-based method and memory-based learning for Korean text chunking. The proposed method is primarily based on the rules, and then the chunks estimated by the rules are verified by memory-based classifier. An evaluation of the proposed method on Korean STEP 2000 corpus yields the improvement in F-score over the rules or various machine teaming methods alone. The final F-score is 94.19, while those of the rules and SVMs, the best machine learning method for this task, are just 91.87 and 92.54 respectively.

Prediction for Rolling Force in Hot-rolling Mill Using On-line learning Neural Network (On-line 학습 신경회로망을 이용한 열간 압연하중 예측)

  • Son Joon-Sik;Lee Duk-Man;Kim Ill-Soo;Choi Seung-Gap
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • In the foe of global competition, the requirements for the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a mai or change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. In this paper, an on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

Prediction for Rolling Force in Hot-rolling Mill Using On-line loaming Neural Network (On-line 학습 신경회로망을 이용한 열간 압연하중 예측)

  • 손준식;이덕만;김일수;최승갑
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.124-129
    • /
    • 2003
  • In the face of global competitor the requirements flor the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a major change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models fir simulation and quantitative description of the industrial operations involved. In this paper, a on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

  • PDF

Improvement of rotor flux estimation performance of induction motor using Support Vector Machine $\epsilon$-insensitive Regression Method (Support Vector Machine $\epsilon$-insensitive Regression방법을 이용한 유도전동기의 회전자 자속추정 성능개선)

  • Han, Dong-Chang;Baek, Un-Jae;Kim, Seong-Rak;Park, Ju-Hyeon;Lee, Seok-Gyu;Park, Jeong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.43-46
    • /
    • 2003
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector machine(SVM) is presented. Two veil-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. The theory of the SVM algorithm is based on statistical teaming theory. Training of SVH leads to a quadratic programming(QP) problem. The proposed SVM rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of Proposed algorithm are throughly verified through numerical simulation.

  • PDF

Automatic semantic annotation of web documents by SVM machine learning (SVM 기계학습을 이용한 웹문서의 자동 의미 태깅)

  • Hwang, Woon-Ho;Kang, Sin-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.2
    • /
    • pp.49-59
    • /
    • 2007
  • This paper is about an system which can perform automatic semantic annotation to actualize "Semantic Web." Since it is impossible to tag numerous documents manually in the web, it is necessary to gather large Korean web documents as training data, and extract features by using natural language techniques and a thesaurus. After doing these, we constructed concept classifiers through the SVM (support vector machine) teaming algorithm. According to the characteristics of Korean language, morphological analysis and syntax analysis were used in this system to extract feature information. Based on these analyses, the concept code is mapped with Kadokawa thesaurus, which made it possible to map similar words and phrase to one concept code, to make training vectors. This contributed to rise the recall of our system. Results of the experiment show the system has a some possibility of semantic annotation.

  • PDF

An Enhanced Feature Selection Method Based on the Impurity of Words Considering Unbalanced Distribution of Documents (문서의 불균등 분포를 고려한 단어 불순도 기반 특징 선택 방법)

  • Kang, Jin-Beom;Yang, Jae-Young;Choi, Joong-Min
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.804-816
    • /
    • 2007
  • Sample training data for machine learning often contain irrelevant information or redundant concept. It is also the case that the original data may include noise. If the information collected for constructing learning model is not reliable, it is difficult to obtain accurate information. So the system attempts to find relations or regulations between features and categories in the teaming phase. The feature selection is to remove irrelevant or redundant information before constructing teaming model. for improving its performance. Existing feature selection methods assume that the distribution of documents is balanced in terms of the number of documents for each class and the length of each document. In practice, however, it is difficult not only to prepare a set of documents with almost equal length, but also to define a number of classes with fixed number of document elements. In this paper, we propose a new feature selection method that considers the impurities among the words and unbalanced distribution of documents in categories. We could obtain feature candidates using the word impurity and eventually select the features through unbalanced distribution of documents. We demonstrate that our method performs better than other existing methods via some experiments.