• Title/Summary/Keyword: Machine method

Search Result 7,745, Processing Time 0.036 seconds

Implementation of Web-based Virtual Machine Tools (Web 기반 가상공작기계의 구현)

  • 정광식;서석환;서윤호;이현수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.236-243
    • /
    • 2001
  • A key factor far realizing the internet-based virtual manufacturing system(VMS) and virtual enter-prise(VE) is how to precisely and effectively represent the machine elements and mechanics. In this paper, we present methods to represent the numerically controlled machine tools in the internet environment. The method is composed of: 1) geometrical modeling of the machine tools, 2) kinematic modeling for the movements of the machine tools, and 3) representing the developed model in the internet infrastructure. Based on the models. a web-based virtual machine tools (WVMT) is developed, and it can be accessed at hrrp://wvmt.postech.ac.kr. The WVMT can be used for various purposes: 1) web-based virtual manufacturing system, 2) web-based CAM system, and 3) CNC educational tools for the vocational school through internet.

  • PDF

A Study on the Development of Multi-Way High Speed Pipe Cutting Machine (다열 고속 파이프 절단기 개발에 관한 연구)

  • Lee C.M.;Shin S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.950-953
    • /
    • 2005
  • This study presents development of a multi-way high speed pipe cutting machine to improve production rate of pipe cut pans. In this paper, structural and modal analysis for the developed machine is carried out to check safety of the machine design. The analysis is carried out by FEM simulation using the commercial software, CATIA V5. The machine is modeled by placing proper shell and solid finite elements. The final results of analysis are applied to the design of multi-way high speed pipe cutting machine and the machine is successfully developed.

  • PDF

Sound Visualization Method using Joint Time-Frequency Analysis for Visual Machine Condition Monitoring

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.53-59
    • /
    • 2015
  • Noise from the surrounding environment, building structures and machine equipment have significant effects on daily life. Many solutions to this problem have been suggested by analyzing causes of noise generated from particular locations in general buildings or machine equipment and detecting defects of buildings or equipment. Therefore, this paper suggests a visualization technique of sounds by using the microphone array to measure sound sources from machines and perform the visual machine condition monitoring (VMCM). By analyzing sound signals and presenting effective sound visualization methods, it can be applied to identify machine's conditions and correct errors through real-time monitoring and visualization of noise generated from the plant machine equipment.

Review on Applications of Machine Learning in Coastal and Ocean Engineering

  • Kim, Taeyoon;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.194-210
    • /
    • 2022
  • Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered.

Defect Identification through Frequency Analysis of Vibration -In Case of Rotary Machine_ (진동의 주파수분석을 통한 결함 식별 - 회전기계를 중심으로-)

  • Jeong, Yoon-Seong;Wang, Gi-Nam;Kim, Gwang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.82-90
    • /
    • 1995
  • This paper pressents a condition-based maintenance (CBM) method through bibration analysis. The well known frequency analysis is employed for performing machine fault diagnosis. The statistical control chart is also applied for analyzing the trend of the bearing wear. Vibration sensors are attached to prototype machine and signals are continuously monitored. The sampled data are utilized to evaluate how well the fast fourier transform(FFT) and the statistical control chart techniques could be used to identify defects of machine and to analyze the machine degradation. Experimental results show that the propowed approach could classify every mal-function and could be utilized for real machine diagnosis system.

  • PDF

Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models (투자와 수출 및 환율의 고용에 대한 의사결정 나무, 랜덤 포레스트와 그래디언트 부스팅 머신러닝 모형 예측)

  • Chae-Deug Yi
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.281-299
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning methods to forecast the employment. The machine learning methods, such as decision tree, artificial neural network, and ensemble models such as random forest and gradient boosting regression tree were used to forecast the employment in Busan regional economy. The following were the main findings of the comparison of their predictive abilities. First, the forecasting power of machine learning methods can predict the employment well. Second, the forecasting values for the employment by decision tree models appeared somewhat differently according to the depth of decision trees. Third, the predictive power of artificial neural network model, however, does not show the high predictive power. Fourth, the ensemble models such as random forest and gradient boosting regression tree model show the higher predictive power. Thus, since the machine learning method can accurately predict the employment, we need to improve the accuracy of forecasting employment with the use of machine learning methods.

Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking (배깅 및 스태킹 기반 앙상블 기계학습법을 이용한 고성능 콘크리트 압축강도 예측모델 개발)

  • Yun-Ji Kwak;Chaeyeon Go;Shinyoung Kwag;Seunghyun Eem
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • Predicting the compressive strength of high-performance concrete (HPC) is challenging because of the use of additional cementitious materials; thus, the development of improved predictive models is essential. The purpose of this study was to develop an HPC compressive-strength prediction model using an ensemble machine-learning method of combined bagging and stacking techniques. The result is a new ensemble technique that integrates the existing ensemble methods of bagging and stacking to solve the problems of a single machine-learning model and improve the prediction performance of the model. The nonlinear regression, support vector machine, artificial neural network, and Gaussian process regression approaches were used as single machine-learning methods and bagging and stacking techniques as ensemble machine-learning methods. As a result, the model of the proposed method showed improved accuracy results compared with single machine-learning models, an individual bagging technique model, and a stacking technique model. This was confirmed through a comparison of four representative performance indicators, verifying the effectiveness of the method.

Design of umbrella arch method based on adaptive SVM and reliability concept (Adaptive SVM 기법 및 신뢰성 개념을 적용한 강관다단공법의 설계기법 연구)

  • Lee, Jun S.;Sagong, Myung;Park, Jeongjun;Choi, Il Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.701-715
    • /
    • 2018
  • A reliability based design approach of the tunnel reinforcement with umbrella arch method was considered to better represent the uncertainties of the weak rock properties around the tunnel. For this, a machine learning approach called an Adaptive Support Vector Machine (ASVM) together with the limit equilibrium method were introduced to minimize the iteration numbers during the classification training of the tunnel stability. The proposed method was compared with the results of typical Monte Carlo simulations. It was concluded that the ASVM was very efficient and accurate to calculate the probability of failure having auxiliary umbrella arches and uncertain material properties of the tunnel. Future work will be concentrated on the refinement of the fast adaptation of the SVM classification so that the minimum number of numerical analyses can be used where the limit solution is not available.

An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China (Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로)

  • Ding, Xuan-Ze;Lee, Young-Chan
    • Journal of Industrial Convergence
    • /
    • v.16 no.4
    • /
    • pp.33-46
    • /
    • 2018
  • Personal credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Recently, many classification algorithms and models are used in personal credit scoring. Personal credit scoring technology is usually divided into statistical method and non-statistical method. Statistical method includes linear regression, discriminate analysis, logistic regression, and decision tree, etc. Non-statistical method includes linear programming, neural network, genetic algorithm and support vector machine, etc. But for the development of the credit scoring model, there is no consistent conclusion to be drawn regarding which method is the best. In this paper, we will compare the performance of the most common scoring techniques such as logistic regression, neural network, and support vector machines using personal credit data of the financial institution in China. Specifically, we build three models respectively, classify the customers and compare analysis results. According to the results, support vector machine has better performance than logistic regression and neural networks.

A study on the Filtering of Spam E-mail using n-Gram indexing and Support Vector Machine (n-Gram 색인화와 Support Vector Machine을 사용한 스팸메일 필터링에 대한 연구)

  • 서정우;손태식;서정택;문종섭
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2004
  • Because of a rapid growth of internet environment, it is also fast increasing to exchange message using e-mail. But, despite the convenience of e-mail, it is rising a currently bi9 issue to waste their time and cost due to the spam mail in an individual or enterprise. Many kinds of solutions have been studied to solve harmful effects of spam mail. Such typical methods are as follows; pattern matching using the keyword with representative method and method using the probability like Naive Bayesian. In this paper, we propose a classification method of spam mails from normal mails using Support Vector Machine, which has excellent performance in pattern classification problems, to compensate for the problems of existing research. Especially, the proposed method practices efficiently a teaming procedure with a word dictionary including a generated index by the n-Gram. In the conclusion, we verified the proposed method through the accuracy comparison of spm mail separation between an existing research and proposed scheme.