• Title/Summary/Keyword: Machine knowledge

Search Result 643, Processing Time 0.022 seconds

A Case Study on the Target Sampling Inspection for Improving Outgoing Quality (타겟 샘플링 검사를 통한 출하품질 향상에 관한 사례 연구)

  • Kim, Junse;Lee, Changki;Kim, Kyungnam;Kim, Changwoo;Song, Hyemi;Ahn, Seoungsu;Oh, Jaewon;Jo, Hyunsang;Han, Sangseop
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.421-431
    • /
    • 2021
  • Purpose: For improving outgoing quality, this study presents a novel sampling framework based on predictive analytics. Methods: The proposed framework is composed of three steps. The first step is the variable selection. The knowledge-based and data-driven approaches are employed to select important variables. The second step is the model learning. In this step, we consider the supervised classification methods, the anomaly detection methods, and the rule-based methods. The applying model is the third step. This step includes the all processes to be enabled on real-time prediction. Each prediction model classifies a product as a target sample or random sample. Thereafter intensive quality inspections are executed on the specified target samples. Results: The inspection data of three Samsung products (mobile, TV, refrigerator) are used to check functional defects in the product by utilizing the proposed method. The results demonstrate that using target sampling is more effective and efficient than random sampling. Conclusion: The results of this paper show that the proposed method can efficiently detect products that have the possibilities of user's defect in the lot. Additionally our study can guide practitioners on how to easily detect defective products using stratified sampling

Network Analysis between Uncertainty Words based on Word2Vec and WordNet (Word2Vec과 WordNet 기반 불확실성 단어 간의 네트워크 분석에 관한 연구)

  • Heo, Go Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.247-271
    • /
    • 2019
  • Uncertainty in scientific knowledge means an uncertain state where propositions are neither true or false at present. The existing studies have analyzed the propositions written in the academic literature, and have conducted the performance evaluation based on the rule based and machine learning based approaches by using the corpus. Although they recognized that the importance of word construction, there are insufficient attempts to expand the word by analyzing the meaning of uncertainty words. On the other hand, studies for analyzing the structure of networks by using bibliometrics and text mining techniques are widely used as methods for understanding intellectual structure and relationship in various disciplines. Therefore, in this study, semantic relations were analyzed by applying Word2Vec to existing uncertainty words. In addition, WordNet, which is an English vocabulary database and thesaurus, was applied to perform a network analysis based on hypernyms, hyponyms, and synonyms relations linked to uncertainty words. The semantic and lexical relationships of uncertainty words were structurally identified. As a result, we identified the possibility of automatically expanding uncertainty words.

The Characteristics of Residual Stand Damages Caused by Skyline Thinning Operations in Mixed Conifer Stands in South Korea

  • Han, Sang-Kyun;Cho, Min-Jae;Baek, Seung-An;Yun, Ju-Ung;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • A tree-length harvesting system using the HAM300, which is mounted on a farm tractor prototype machine, have been recently introduced in South Korea for thinning old (>30 years) forests. However, no research has previously been conducted on the characteristics of residual stand damage associated with cable yarding systems on thinning treatment stands in South Korea. Therefore, there were assessed on the degree and quantity of residual stand damage caused by felling and yarding process to broaden the knowledge of residual stand damage on semi-mechanized skyline thinning operations. This study investigated scar size, direction, area, shape type and their distribution on the residual stand damage caused by felling and yarding operations. Damage to residual trees was generated for 7.4% and 6.9% of residual trees in felling and yarding operations, respectively. Damaged direction of scars was located in front-side (38.9%) and up-side (34.7%) for felling operations while the highest scar damage was found on down-side (44.6%) for yarding operations. Scar heights of felling damage were higher than those of yarding damage. In yarding operation, the most of the scars was located within l0m from the center of the skyline corridor. These results should be useful information for forest managers and landowners to reduce residual stand damages and retain valuable timber volume from thinning treatments.

Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy (국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향)

  • Chung, Sewoong;Kim, Sungjin;Park, Hyungseok;Seo, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

Educational Contents for Concepts and Algorithms of Artificial Intelligence

  • Han, Sun Gwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • This study is to design and to develop the educational contents to enhance artificial intelligence literacy. First, we designed artificial intelligence education contents and constructed education programs. The contents are composed of a total of 15 lectures in 8 AI domains. The contents contain the elements of knowledge-skill-attitude, and 5 learning steps. The developed contents were organized in the form of online materials and included simulations and worksheets to directly manipulate and explore the concepts and algorithms of AI. In addition, we provided evaluation questions for each content. To examine the suitability of content, we conducted a validity test for experts. As a result of the content validity test, the overall average was .71 or higher, and the CVI value of the class suitability was .82, indicating a high validity. We are expected to use the contents developed in this study as an effective program to improve AI literacy in university liberal arts education.

Design and Implementation of Reinforcement Learning Agent Using PPO Algorithim for Match 3 Gameplay (매치 3 게임 플레이를 위한 PPO 알고리즘을 이용한 강화학습 에이전트의 설계 및 구현)

  • Park, Dae-Geun;Lee, Wan-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • Most of the match-3 puzzle games supports automatic play using the MCTS algorithm. However, implementing reinforcement learning agents is not an easy job because it requires both the knowledge of machine learning and the way of complex interactions within the development environment. This study proposes a method in which we can easily design reinforcement learning agents and implement game play agents by applying PPO(Proximal Policy Optimization) algorithms. And we could identify the performance was increased about 44% than the conventional method. The tools we used are the Unity 3D game engine and Unity ML SDK. The experimental result shows that agents became to learn game rules and make better strategic decisions as experiments go on. On average, the puzzle gameplay agents implemented in this study played puzzle games better than normal people. It is expected that the designed agent could be used to speed up the game level design process.

Present Status and Future of AI-based Drug Discovery (신약개발에서의 AI 기술 활용 현황과 미래)

  • Jung, Myunghee;Kwon, Wonhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1797-1808
    • /
    • 2021
  • Artificial intelligence is considered one of the core technologies leading the 4th industrial revolution. It is adopted in various fields bringing about a huge paradigm shift throughout our society. The field of biotechnology is no exception. It is undergoing innovative development by converging with other disciplines such as computers, electricity, electronics, and so on. In drug discovery and development, big data-based AI technology has a great potential of improving the efficiency and quality of drug development, rapidly advancing to overcome the limitations in the existing drug development process. AI technology is to be specialized and developed for the purpose including clinical efficacy and safety-related end points based on the multidisciplinary knowledge such as biology, chemistry, toxicology, pharmacokinetics, etc. In this paper, we review the current status of AI technology applied for drug discovery and consider its limitations and future direction.

Comparison of Anomaly Detection Performance Based on GRU Model Applying Various Data Preprocessing Techniques and Data Oversampling (다양한 데이터 전처리 기법과 데이터 오버샘플링을 적용한 GRU 모델 기반 이상 탐지 성능 비교)

  • Yoo, Seung-Tae;Kim, Kangseok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • According to the recent change in the cybersecurity paradigm, research on anomaly detection methods using machine learning and deep learning techniques, which are AI implementation technologies, is increasing. In this study, a comparative study on data preprocessing techniques that can improve the anomaly detection performance of a GRU (Gated Recurrent Unit) neural network-based intrusion detection model using NGIDS-DS (Next Generation IDS Dataset), an open dataset, was conducted. In addition, in order to solve the class imbalance problem according to the ratio of normal data and attack data, the detection performance according to the oversampling ratio was compared and analyzed using the oversampling technique applied with DCGAN (Deep Convolutional Generative Adversarial Networks). As a result of the experiment, the method preprocessed using the Doc2Vec algorithm for system call feature and process execution path feature showed good performance, and in the case of oversampling performance, when DCGAN was used, improved detection performance was shown.

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

A Detailed Review on Recognition of Plant Disease Using Intelligent Image Retrieval Techniques

  • Gulbir Singh;Kuldeep Kumar Yogi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.77-90
    • /
    • 2023
  • Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.