최근에 머신 러닝 기술은 의료, 제조, 마케팅, 금융, 방송, 농업 등 사회 전반에 많은 영향을 미치고 있고 미래에도 인류의 생활에 많은 도움을 줄 것으로 예상된다. 본 논문에서는 인류의 생존에 가장 큰 영향을 주는 먹거리 즉, 농업 분야에 머신러닝기술을 적용하는 방법을 연구한다. 농업 분야에 IoT(Internet of Things) 기술을 접목하는 스마트 팜 (Smart Farm) 분야는 생육환경을 실시간으로 모니터링 하여 농작물의 생육환경을 최적으로 유지 하는 방법을 중점적으로 연구한다. 최근 KT에서 출시된 기가 스마트 팜 솔루션 2.0 에서는 머신러닝 기술을 사용하여 온실내의 온습도를 최적으로 유지하는 기술에 머신러닝을 적용하였다. 기존의 스마트 팜 분야 연구가 생육환경 조절에 중점을 두어 생산성 증대에 집중되어 있지만 본 연구에서는 과일을 최상의 품질 상태에서 수확하여 좋은 가격으로 출하할 수 있도록 수확시기에 머신러닝을 적용하는 방법을 연구한다. 스마트 팜 분야에 머신러닝 기술을 적용하기 위해서는 풍부한 빅 데이터의 확보가 무엇보다 중요하므로 정확한 머신러닝 기술을 적용하기 위해서는 지속적으로 빅 데이터 수집이 가능해야 한다. 본 논문에서 수확시기 예측에 필요한 인자로는 온실 내에서 재배되는 과일의 색상 값과 무게 값, 내부 온습도 값을 색상센서 와 무게센서, 온습도센서를 사용하여 실시간으로 수집하여 확보한다. 본 논문에서 제안하는 FPSML은 유사 과일 재배에 반복적으로 사용할 수 있는 아키텍처를 제공하며 지속적으로 빅 데이터가 축적될수록 보다 정밀한 수확시기를 예측할 수 있다.
본 연구는 자연 조건에서 쌀가루용 벼의 수발아율을 예측하기 위한 것으로 기계학습을 이용하여 기상요소들에 따른 수발아율을 간단히 예측할 수 있는 초기 시스템을 개발하기 위해 수행되었다. 이를 위하여 강원도, 충청북도, 경상북도에 위치한 6개 지역에서 쌀가루용 벼 3품종을 재배하였다. 수확 후 수발아율과 출수일을 조사하였으며, 각 지역의 종관기상대의 일평균 기온과 상대 습도, 그리고 강수량 정보를 이용하여 기계학습 모델 중 하나이며, 정확도가 높은 GBM 모델로 수발아율을 예측하였다. 2017년부터 2019년까지 강원과 충북, 그리고 경북의 6개 지역에서 쌀가루 용 벼 3품종에 대해 재배 실험을 수행하였다. 조사 항목은 출수일과 수발아율이었다. 기상자료는 동일한 지역명의 종관기상대를 이용하여 일 평균 기온 및 상대 습도, 그리고 강수량 자료를 수집하였다. 수발아율 예측을 위해 기계학습 모델인 Gradient Boosting Machine (GBM)을 이용하였으며, 학습 투입 변수로는 평균 기온과 상대 습도, 그리고 총 강수량이었다. 또한 수발아 피해 관련 기간을 설정하기 위해 출수 후 몇일 후부터 그 이후의 기간에 대한 실험도 수행하였다. 자료는 수발아 피해 관련 기간의 교정을 위한 training-set과 vali-set, 검증을 위한 test-set으로 구분하였다. training-set과 vali-set으로 교정한 결과, 출수 후 22일 후부터 24일동안에서 가장 높은 score를 나타내었다. test-set으로 검증한 결과는 3.0%보다 낮은 구간에서 수발아율을 약간 높게 예측한 경향이 있었지만, 높은 예측력을 보였다(R2=0.76). 따라서, 기계학습을 이용하여 특정기간동안의 기상요소들로 수발아율을 간단하게 예측할 수 있을 것으로 예상된다. 본 연구의 결과를 종합해 볼 때, 기계학습을 이용하여 특정 기간 동안에 평균 기온과 상대 습도, 그리고 총 강수량으로 높은 수발아율 예측 성능을 보였으며, 이 시스템을 이용하여 일반 농가들을 대상으로 수발아에 관한 피해를 예방할 수 있는 조기 수발아 예측 시스템으로 이용가능 할 것으로 판단된다. 하지만 품종마다 휴면 정도 차이로 인한 수발아 관련 기간에 차이가 있으므로, 다른 쌀가루용 벼 품종에 대해서도 추가로 조사하고, 개별 품종으로 세분화하여 분석한다면 좀 더 정확도 높은 예측 시스템을 개발할 수 있을 것으로 판단된다.
Purpose: Mee (Madhuca longifolia) is an economically important tree growing throughout Sri Lanka. Its importance is mainly attributed to its oil with high nutritional and medicinal values. However, an inefficient extraction method limits its use. This study revealed the possibility of extracting oil from mee seeds by using a screw-type oil expeller. Methods: A popular screw-type oil expeller was used in the experiment. Extract bar clearance and speeds of the main spiral shaft were altered to increase the oil expelling efficiency of the machine. The quality of refined oil at the optimum oil yield was determined by measuring the refractive index, saponification value, iodine value, unsaponifiable matter, free fatty acid, and specific gravity. Results: An optimum yield of 35% oil was obtained when the machine capacity was 30 kg/h and energy consumption was 0.13 kWh/kg. This optimum machine condition was observed at an extract bar clearance of 0.5 mm and a main spiral shaft speed of 90 rpm. The refractive index, saponification value, iodine value, unsaponifiable matter, free fatty acid, and specific gravity of the oil were 1.4, 203, 59, 3.5%, 0.2%, and 0.907 g/cm3 respectively. Color of the mee oil was closer to yellow, which is revealed by the lightness value (L) of 24.93 and positive value (b) of 11.81. Conclusion: The screw-type oil expeller can be used for economically extracting mee oil on a commercial scale.
A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.
According to the rising of national economic level, domestic consumption of vegetables having high additive values is increased continuously due to increased consumption of meat in last decade. These vegetables are produced almost in this country and are limited to import from neighbor countries in due of high transportation expenses for storing in refrigerated container. It is very important to mechanize the harvest work, forming more than 30% for their production cost, in order to cultivate variable vegetables at the same time according to their harvesting seasons. In this state its former harvest methods, with using of human power or semi-automatic harvest, caused to increase their production cost due to high labor cost and low working efficiency.
Pepper is the most important horticultural plant in Korean farm. Pepper harvesting has been known to be the most difficult process in pepper cultivation so that demand for mechanization is strong. In a research to develop a pepper harvesting machine performance and capacity of the harvester should be determined based on both economical feasibility and machine design concept. In order to accomplish an economical analysis of the pepper harvester, a mathematical model for comparing manual harvesting cost to machine harvest cost was developed. Validity of the model depends on the data used in the model. Economical information for the model variables was acquired from the result of farm survey on pepper cultivation technique and economics of pepper farmer. Technical information on pepper harvester were also collected through literature review and analyzed. Based on the economical analysis and synthesis of the technical information on pepper harvesters, its performance and capacity were determined. The operating performances of the harvester such as cutting, conveying, flipping, pepper removing and post-processing (sorting) were determined. Daisy capacity of the machine was determined to be 0.41 ha. A pepper harvester with the suggested capacity was economically feasible if the price of pepper harvester, pepper recovery ratio and service life of harvester were about 6 million won, 80%, and 4 years, respectively.
The study aimed at development of a riding-type mulberry harvester for mechanical harvest. A riding-type mulberry harvester has been developed to harvest on sloped land with a higher efficiency. It has been implemented over a period of 2 years from 1996 to 1997. The result is as follows. It moves on carterpillar with a level adjusting system. It reduced only from 14.6 hrs to 0.9hrs/10a for cutting in a range of 25 to 80 cm high and possibly used for both spring and autumn. It reduced only the labor requirements of mulberry harvesting by 94 percent, as compared to that of the manual harvest. All related processes, cutting, binding and loading are simultaneously done by this harvester and totally it can reduce 96 percent of the labor requirements, as compared to 20.4 hrs/10a of the manual harvest. The machine compared to improved mulberry harvest efficiency with 11.11a per hour by about 23 times as compared to 0.49a per hour manpower. Cost analysis indicated that the riding-type mulberry harvester saved overall cost by 66 percent from 980,000 won per ha manpower to 330,000 won per ha.
본 연구는 근래에 건강 기능성효과가 널리 알려지면서 수요가 증가함에 따라 재배면적과 생산량이 증가하고 있는 종실용 들깨의 기계화재배를 촉진하기 위하여 수확 때 종자탈립에 의한 손실률은 최소화하고 수량성을 높일 수 있는 최적 파종시기를 설정하고자 수행하였다. 1. 파종기가 늦어질수록 파종후 개화기까지 생육일수는 짧아져 6월 15일 파종대비 6월 30일, 7월 15일 및 8월 1일 파종에서 각각 14일, 26일 및 31~32일 짧아졌으며, 또한 경장과 경태는 짧아지거나 가늘어졌으며 마디수가 적어지는 경향을 나타냈다. 2. 유효분지수는 6월 15일 파종대비 6월 30일, 7월 15일 및 8월 1일 파종에서 각각 82%, 61% 및 56%로 7월 15일 파종부터 급격히 낮아져 수량성 확보에 불리한 것으로 판단되었다. 그리고 최저화방군의 높이는 파종기가 늦어질수록 대체로 짧아지는데, 소담의 7월 15일과 8월 1일 점파구의 경우 15 cm 이하로 예취기를 이용한 기계수확에 불리하게 작용할 것으로 판단되었다. 3. 파종기와 수량성 간에는 고도의 유의성이 인정되었는데, 총수량은 6월 15일, 6월 30일 및 7월 15일 파종에서 통계적 유의차는 없었지만, 종실탈립률의 경우 7월 15일, 8월 1일(30.3%) > 6월 15일(15.3%) > 6월 30일(13.5%) 파종의 순이었는데, 탈립된 종실을 제외한 순수량은 6월 30일$${\geq_-}$$6월 15일 > 7월 15일 > 8월 1일 파종 순으로 높게 나타났으며 이러한 경향은 품종 및 파종방법에 관계없이 나타나는 일반적인 특징이었다. 4. 들깨 종실의 단백질 함유율은 파종기가 늦어질수록 대체로 증가하여 8월 1일 파종에서 가장 높았으며, 조지방 함유율의 경우 소담은 6월 15일과 7월 15일 파종에서, 들샘은 6월 30일과 7월 15일 파종에서 비교적 높았으며, 리놀렌산의 함량율은 8월 1일 파종에서 특이적으로 높은 수준을 나타냈다. 5. 위의 결과, 종실용 들깨의 예취기를 이용한 기계수확을 위한 최적 파종시기는 6월 30일 경으로 이때 파종하면 수확 때 종실탈립에 의한 손실률은 최소화하면서 수량증대에 유리하여 기계수확에 가장 적합한 파종시기로 판단되었다.
In this study, an edible fresh corn harvest testing machine was designed and manufactured. And harvesting performance was analyzed through the field test. The testing machine is of the tractor attached type. It is connected to the tractor PTO shaft to transfer power to the each part of the harvesting machine. And it harvests fresh corn by one row through the processes of cutting, stem crushing, detaching, and collecting. The performance test was performed at PTO speed (540, 750, 1050 rpm, respectively), working speed (0.1, 0.15, 0.2 m/s, respectively), and cropping cultivation (row spacing·hill spacing 70·25 cm, 70·40 cm, 90·30 cm, respectively). The performance test was repeated three times in the 15 m section. The detachment loss ratio, uncollected crop ratio, damage ratio, and harvest ratio were analyzed. As a result of the performance test, it was analyzed that the PTO speed 540 rpm, running speed of 0.1 m/s, and row spacing·hill spacing 70·40 cm were the optimal condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.