• Title/Summary/Keyword: Machine data analysis

Search Result 2,237, Processing Time 0.028 seconds

Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information (머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

Suggestions on how to convert official documents to Machine Readable (공문서의 기계가독형(Machine Readable) 전환 방법 제언)

  • Yim, Jin Hee
    • The Korean Journal of Archival Studies
    • /
    • no.67
    • /
    • pp.99-138
    • /
    • 2021
  • In the era of big data, analyzing not only structured data but also unstructured data is emerging as an important task. Official documents produced by government agencies are also subject to big data analysis as large text-based unstructured data. From the perspective of internal work efficiency, knowledge management, records management, etc, it is necessary to analyze big data of public documents to derive useful implications. However, since many of the public documents currently held by public institutions are not in open format, a pre-processing process of extracting text from a bitstream is required for big data analysis. In addition, since contextual metadata is not sufficiently stored in the document file, separate efforts to secure metadata are required for high-quality analysis. In conclusion, the current official documents have a low level of machine readability, so big data analysis becomes expensive.

Minimizing Machine-to-Machine Data losses on the Offshore Moored Buoy with Software Approach (소프트웨어방식을 이용한 근해 정박 부이의 기계간의 데이터손실의 최소화)

  • Young, Tan She;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.1003-1010
    • /
    • 2013
  • In this paper, TCP/IP based Machine-to-Machine (M2M) communication uses CDMA/GSM network for data communication. This communication method is widely used by offshore moored buoy for data transmission back to the system server. Due to weather and signal coverage, the TCP/IP M2M communication often experiences transmission failure and causing data losses in the server. Data losses are undesired especially for meteorological and oceanographic analysis. This paper discusses a software approach to minimize M2M data losses by handling transmission failure and re-attempt which meant to transmit the data for recovery. This implementation was tested for its performance on a meteorological buoy placed offshore.

A Study on Training Data Selection Method for EEG Emotion Analysis using Semi-supervised Learning Algorithm (준 지도학습 알고리즘을 이용한 뇌파 감정 분석을 위한 학습데이터 선택 방법에 관한 연구)

  • Yun, Jong-Seob;Kim, Jin Heon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.816-821
    • /
    • 2018
  • Recently, machine learning algorithms based on artificial neural networks started to be used widely as classifiers in the field of EEG research for emotion analysis and disease diagnosis. When a machine learning model is used to classify EEG data, if training data is composed of only data having similar characteristics, classification performance may be deteriorated when applied to data of another group. In this paper, we propose a method to construct training data set by selecting several groups of data using semi-supervised learning algorithm to improve these problems. We then compared the performance of the two models by training the model with a training data set consisting of data with similar characteristics to the training data set constructed using the proposed method.

Semi-Supervised Learning for Fault Detection and Classification of Plasma Etch Equipment (준지도학습 기반 반도체 공정 이상 상태 감지 및 분류)

  • Lee, Yong Ho;Choi, Jeong Eun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2020
  • With miniaturization of semiconductor, the manufacturing process become more complex, and undetected small changes in the state of the equipment have unexpectedly changed the process results. Fault detection classification (FDC) system that conducts more active data analysis is feasible to achieve more precise manufacturing process control with advanced machine learning method. However, applying machine learning, especially in supervised learning criteria, requires an arduous data labeling process for the construction of machine learning data. In this paper, we propose a semi-supervised learning to minimize the data labeling work for the data preprocessing. We employed equipment status variable identification (SVID) data and optical emission spectroscopy data (OES) in silicon etch with SF6/O2/Ar gas mixture, and the result shows as high as 95.2% of labeling accuracy with the suggested semi-supervised learning algorithm.

A Study on the Prediction Model for Imported Vehicle Purchase Cancellation Using Machine Learning: Case of H Imported Vehicle Dealers (머신러닝을 이용한 국내 수입 자동차 구매 해약 예측 모델 연구: H 수입차 딜러사 대상으로)

  • Jung, Dong Kun;Lee, Jong Hwa;Lee, Hyun Kyu
    • The Journal of Information Systems
    • /
    • v.30 no.2
    • /
    • pp.105-126
    • /
    • 2021
  • Purpose The purpose of this study is to implement a optimal machine learning model about the cancellation prediction performance in car sales business. It is to apply the data set of accumulated contract, cancellation, and sales information in sales support system(SFA) which is commonly used for sales, customers and inventory management by imported car dealers, to several machine learning models and predict performance of cancellation. Design/methodology/approach This study extracts 29,073 contracts, cancellations, and sales data from 2015 to 2020 accumulated in the sales support system(SFA) for imported car dealers and uses the analysis program Python Jupiter notebook in order to perform data pre-processing, verification, and modeling that is applying and learning to Machine learning model after then the final result was predicted using new data. Findings This study confirmed that cancellation prediction is possible by applying car purchase contract information to machine learning models. It proved the possibility of developing and utilizing a generalized predictive model by using data of imported car sales system with machine learning technology. It can reduce and prevent the sales failure as caring the potential lost customer intensively and it lead to increase sales revenue by predicting the cancellation possibility of individual customers.

Wearable Sensor-Based Biometric Gait Classification Algorithm Using WEKA

  • Youn, Ik-Hyun;Won, Kwanghee;Youn, Jong-Hoon;Scheffler, Jeremy
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.45-50
    • /
    • 2016
  • Gait-based classification has gained much interest as a possible authentication method because it incorporate an intrinsic personal signature that is difficult to mimic. The study investigates machine learning techniques to mitigate the natural variations in gait among different subjects. We incorporated several machine learning algorithms into this study using the data mining package called Waikato Environment for Knowledge Analysis (WEKA). WEKA's convenient interface enabled us to apply various sets of machine learning algorithms to understand whether each algorithm can capture certain distinctive gait features. First, we defined 24 gait features by analyzing three-axis acceleration data, and then selectively used them for distinguishing subjects 10 years of age or younger from those aged 20 to 40. We also applied a machine learning voting scheme to improve the accuracy of the classification. The classification accuracy of the proposed system was about 81% on average.

The Role of Data Technologies with Machine Learning Approaches in Makkah Religious Seasons

  • Waleed Al Shehri
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.26-32
    • /
    • 2023
  • Hajj is a fundamental pillar of Islam that all Muslims must perform at least once in their lives. However, Umrah can be performed several times yearly, depending on people's abilities. Every year, Muslims from all over the world travel to Saudi Arabia to perform Hajj. Hajj and Umrah pilgrims face multiple issues due to the large volume of people at the same time and place during the event. Therefore, a system is needed to facilitate the people's smooth execution of Hajj and Umrah procedures. Multiple devices are already installed in Makkah, but it would be better to suggest the data architectures with the help of machine learning approaches. The proposed system analyzes the services provided to the pilgrims regarding gender, location, and foreign pilgrims. The proposed system addressed the research problem of analyzing the Hajj pilgrim dataset most effectively. In addition, Visualizations of the proposed method showed the system's performance using data architectures. Machine learning algorithms classify whether male pilgrims are more significant than female pilgrims. Several algorithms were proposed to classify the data, including logistic regression, Naive Bayes, K-nearest neighbors, decision trees, random forests, and XGBoost. The decision tree accuracy value was 62.83%, whereas K-nearest Neighbors had 62.86%; other classifiers have lower accuracy than these. The open-source dataset was analyzed using different data architectures to store the data, and then machine learning approaches were used to classify the dataset.

Error Analysis of Free-Form Artifact using 3D Measurement Data (3차원 측정 데이터를 이용한 자유곡면 가공물의 오차해석)

  • 김성돈;이성근;양승한;이재종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.439-442
    • /
    • 2001
  • The Accuracy of a free-form artifact is affected by machine tool errors, machining process errors, environmental causes and other uncertainty. This paper deals with methodological approach about machine tool errors that are defined the relationship between CMM and OMM inspections of the free-form artifact. In order to analyze the measurement data, Reverse engineering was used. In other words, Surface of Free-Form Artifact is generated by NURBS surface approximation method. Finally, Volumetric error map is made to compare surface of CMM data with that of OMM data.

  • PDF

Machine learning-based Predictive Model of Suicidal Thoughts among Korean Adolescents. (머신러닝 기반 한국 청소년의 자살 생각 예측 모델)

  • YeaJu JIN;HyunKi KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • This study developed models using decision forest, support vector machine, and logistic regression methods to predict and prevent suicidal ideation among Korean adolescents. The study sample consisted of 51,407 individuals after removing missing data from the raw data of the 18th (2022) Youth Health Behavior Survey conducted by the Korea Centers for Disease Control and Prevention. Analysis was performed using the MS Azure program with Two-Class Decision Forest, Two-Class Support Vector Machine, and Two-Class Logistic Regression. The results of the study showed that the decision forest model achieved an accuracy of 84.8% and an F1-score of 36.7%. The support vector machine model achieved an accuracy of 86.3% and an F1-score of 24.5%. The logistic regression model achieved an accuracy of 87.2% and an F1-score of 40.1%. Applying the logistic regression model with SMOTE to address data imbalance resulted in an accuracy of 81.7% and an F1-score of 57.7%. Although the accuracy slightly decreased, the recall, precision, and F1-score improved, demonstrating excellent performance. These findings have significant implications for the development of prediction models for suicidal ideation among Korean adolescents and can contribute to the prevention and improvement of youth suicide.