• Title/Summary/Keyword: Machine control Data

Search Result 818, Processing Time 0.024 seconds

가상화 클라우드 데이터센터에서 가상 머신 간의 균등한 성능 보장을 위한 제어 알고리즘 (Control Algorithm for Virtual Machine-Level Fairness in Virtualized Cloud Data center)

  • 김환태;김황남
    • 한국통신학회논문지
    • /
    • 제38C권6호
    • /
    • pp.512-520
    • /
    • 2013
  • 본 논문은 가상 머신 기반의 클라우드 데이터센터에서 가상 머신의 CPU 스케줄링으로 인해 발생할 수 있는 네트워크 불평등 현상을 해결하는 가상머신 수준의 제어 알고리즘을 제안한다. 이를 위해 이기종 호스트들로 구성된 클라우드 데이터 센터 테스트베드를 구축하고, 가상 머신간의 네트워크 불평등 현상이 발생함을 실험적으로 보인다. 그리고 이를 해결할 수 있는 PID 제어 기법 기반의 가상 머신 네트워크 성능 보장 제어 알고리즘을 설계하고, 이를 실제 시스템에 구현하기 위한 방안을 설명한다. 실제 테스트베드에 제안하는 알고리즘을 구현하여 알고리즘 동작 결과를 분석한다.

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

스마트 팜의 자동 제어를 위한 AMCS(Agricultural Machine Control System) 설계 (A Design of AMCS(Agricultural Machine Control System) for the Automatic Control of Smart Farms)

  • 정이나;이병관;안희학
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.201-210
    • /
    • 2019
  • 본 논문에서는 농장의 위성 사진 혹은 드론 사진을 이용하여 농장을 구분하고 농장 드론과 트랙터의 자율주행 및 행동을 제어하는 'AMCS(Agricultural Machine Control System)'를 제안한다. AMCS는 드론과 트랙터의 센서 데이터 및 비디오 영상 데이터로부터 농장 경계를 구분하고, 메인 서버에서 원격 제어 명령어를 읽어 들인 후 드론 및 트랙터 스프링클러와의 연동을 통해, 관리지역 내의 원격 제어 명령을 전달하는 'LSM(Local Server Module)'과 드론과 트랙터가 농장 밖에서 농장으로 이동하는 경로와 농장 안에서 저비용, 고효율로 일을 처리할 수 있는 경로를 설정하는 'PSM(Path Setting Module)'으로 구성된다. 본 논문에서 제안하는 AMCS의 성능분석 결과 AMCS의 PSM은 외부 출발점에서 농장까지 도달하는 경로를 설정할 때 다익스트라 알고리즘보다 약 100% 향상된 성능을 보였으며, 농장 내부 작업 경로를 설정할 때 기존 경로보다 약 13% 높은 작업 효율을 보였고 36% 낮은 작업 거리를 설정했다. 따라서 PSM은 기존 방식보다 더 효율적으로 트랙터와 드론을 제어할 수 있다.

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

머신러닝 기반 한국 청소년의 자살 생각 예측 모델 (Machine learning-based Predictive Model of Suicidal Thoughts among Korean Adolescents.)

  • YeaJu JIN;HyunKi KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 2023
  • This study developed models using decision forest, support vector machine, and logistic regression methods to predict and prevent suicidal ideation among Korean adolescents. The study sample consisted of 51,407 individuals after removing missing data from the raw data of the 18th (2022) Youth Health Behavior Survey conducted by the Korea Centers for Disease Control and Prevention. Analysis was performed using the MS Azure program with Two-Class Decision Forest, Two-Class Support Vector Machine, and Two-Class Logistic Regression. The results of the study showed that the decision forest model achieved an accuracy of 84.8% and an F1-score of 36.7%. The support vector machine model achieved an accuracy of 86.3% and an F1-score of 24.5%. The logistic regression model achieved an accuracy of 87.2% and an F1-score of 40.1%. Applying the logistic regression model with SMOTE to address data imbalance resulted in an accuracy of 81.7% and an F1-score of 57.7%. Although the accuracy slightly decreased, the recall, precision, and F1-score improved, demonstrating excellent performance. These findings have significant implications for the development of prediction models for suicidal ideation among Korean adolescents and can contribute to the prevention and improvement of youth suicide.

캠 형상 전용 측정기 제어 및 해석 S/W 개발 (Control and data analysis of a measuring machine for cams)

  • 최동우;강재관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.150-153
    • /
    • 1997
  • In this paper, a control and data analysis S/W of a dedicated measuring machine for cams is developed. A rotary encoder is employed to measure the angular displacement of the motor, and a linear scale does the linear displacement of the prove. The design and measuring data are interpolated by cubic spline curves respectively to compute the error which is defined by the maximum distance between two curves. Further, optimization module to find the exact error is also developed to remove the error occurred due initial measuring position. The developed system takes only 6 minutes to measure the cam and to analyze the measuring data while the CMM takes about 1 hours even with a skilled operator.

  • PDF

설명 가능한 AI를 적용한 기계 예지 정비 방법 (Explainable AI Application for Machine Predictive Maintenance)

  • 천강민;양재경
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.227-233
    • /
    • 2021
  • Predictive maintenance has been one of important applications of data science technology that creates a predictive model by collecting numerous data related to management targeted equipment. It does not predict equipment failure with just one or two signs, but quantifies and models numerous symptoms and historical data of actual failure. Statistical methods were used a lot in the past as this predictive maintenance method, but recently, many machine learning-based methods have been proposed. Such proposed machine learning-based methods are preferable in that they show more accurate prediction performance. However, with the exception of some learning models such as decision tree-based models, it is very difficult to explicitly know the structure of learning models (Black-Box Model) and to explain to what extent certain attributes (features or variables) of the learning model affected the prediction results. To overcome this problem, a recently proposed study is an explainable artificial intelligence (AI). It is a methodology that makes it easy for users to understand and trust the results of machine learning-based learning models. In this paper, we propose an explainable AI method to further enhance the explanatory power of the existing learning model by targeting the previously proposedpredictive model [5] that learned data from a core facility (Hyper Compressor) of a domestic chemical plant that produces polyethylene. The ensemble prediction model, which is a black box model, wasconverted to a white box model using the Explainable AI. The proposed methodology explains the direction of control for the major features in the failure prediction results through the Explainable AI. Through this methodology, it is possible to flexibly replace the timing of maintenance of the machine and supply and demand of parts, and to improve the efficiency of the facility operation through proper pre-control.

머신러닝기반의 사물인터넷 도시기상 관측자료 품질검사 알고리즘 개발에 관한 연구 (A study on the development of quality control algorithm for internet of things (IoT) urban weather observed data based on machine learning)

  • 이승운;정승권
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1071-1081
    • /
    • 2021
  • 본 연구에서는 기상청에서 수행하는 기존의 기상 관측에 대한 품질관리 절차 이외에 향후 스마트시티 등에서 활용될 수 있는 머신러닝 기반의 Internet of Things (IoT) 도시기상 관측 자료에 대한 품질검사 기준을 제안한다. 현재 기상청에서 종관기상관측(Automated Synoptic Observing System, ASOS)과 방재기상관측(Automatic Weather System, AWS) 기반으로 설정한 기준이 도시기상에 적합한지 확인하기 위하여 서울시에 설치된 SKT AWS 자료를 기반으로 사용성을 검증하였고, IoT 자체의 데이터가 가지는 특성을 고려하여 최종적으로 머신러닝 기반의 품질검사 알고리즘을 제안하였다. 품질검사 방법으로는 IoT 기기 자체에 대한 결측값 검사, 값 패턴 검사, 충분 데이터 검사, 통계적 범위 이상 검사, 시간값 이상 검사, 공간값 이상 검사를 먼저 수행하고, 기상청에서 제시하고 있는 기상 관측에 대한 품질검사인 물리한계검사, 단계검사, 지속성 검사, 기후범위 검사, 내적 일치성 검사를 5가지 기상요소에 대하여 각각 수행하였다. 제안한 알고리즘의 검증을 위하여 인천광역시 송도에 위치한 관측소에 실제 IoT 도시기상관측 데이터에 이를 적용하였다. 이를 통해 기존의 기상청 QC로는 확인할 수 없었던 IoT 기기가 가질 수 있는 결함을 확인할 수 있고, 알고리즘에 대한 검증을 진행하여 향후 스마트시티에 설치될 IoT 기상관측기기에 대한 품질검사 방법을 제안한다.

SVM 기반 자동 품질검사 시스템에서 상관분석 기반 데이터 선정 연구 (Study on Correlation-based Feature Selection in an Automatic Quality Inspection System using Support Vector Machine (SVM))

  • 송동환;오영광;김남훈
    • 대한산업공학회지
    • /
    • 제42권6호
    • /
    • pp.370-376
    • /
    • 2016
  • Manufacturing data analysis and its applications are getting a huge popularity in various industries. In spite of the fast advancement in the big data analysis technology, however, the manufacturing quality data monitored from the automated inspection system sometimes is not reliable enough due to the complex patterns of product quality. In this study, thus, we aim to define the level of trusty of an automated quality inspection system and improve the reliability of the quality inspection data. By correlation analysis and feature selection, this paper presents a method of improving the inspection accuracy and efficiency in an SVM-based automatic product quality inspection system using thermal image data in an auto part manufacturing case. The proposed method is implemented in the sealer dispensing process of the automobile manufacturing and verified by the analysis of the optimal feature selection from the quality analysis results.

Application Consideration of Machine Learning Techniques in Satellite Systems

  • Jin-keun Hong
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.48-60
    • /
    • 2024
  • With the exponential growth of satellite data utilization, machine learning has become pivotal in enhancing innovation and cybersecurity in satellite systems. This paper investigates the role of machine learning techniques in identifying and mitigating vulnerabilities and code smells within satellite software. We explore satellite system architecture and survey applications like vulnerability analysis, source code refactoring, and security flaw detection, emphasizing feature extraction methodologies such as Abstract Syntax Trees (AST) and Control Flow Graphs (CFG). We present practical examples of feature extraction and training models using machine learning techniques like Random Forests, Support Vector Machines, and Gradient Boosting. Additionally, we review open-access satellite datasets and address prevalent code smells through systematic refactoring solutions. By integrating continuous code review and refactoring into satellite software development, this research aims to improve maintainability, scalability, and cybersecurity, providing novel insights for the advancement of satellite software development and security. The value of this paper lies in its focus on addressing the identification of vulnerabilities and resolution of code smells in satellite software. In terms of the authors' contributions, we detail methods for applying machine learning to identify potential vulnerabilities and code smells in satellite software. Furthermore, the study presents techniques for feature extraction and model training, utilizing Abstract Syntax Trees (AST) and Control Flow Graphs (CFG) to extract relevant features for machine learning training. Regarding the results, we discuss the analysis of vulnerabilities, the identification of code smells, maintenance, and security enhancement through practical examples. This underscores the significant improvement in the maintainability and scalability of satellite software through continuous code review and refactoring.