Proceedings of the Korean Society of Machine Tool Engineers Conference
/
2004.04a
/
pp.359-364
/
2004
A high-speed and intelligent CNC system has been developed by Turbotek Co., Ltd. This paper presents the study for commercialization of the developed CNC system. In order to acquire stability and reliability of the developed CNC system, its hardwares and softwares ate improved. The CNC main unit is revised to a compact box-type CNC controller. Moreover, the integrated CNC main unit that has built-in and expandable I/O modules is also developed. Remote monitoring, fault diagnosis End NURBS interpolation functions are realized on the CNC system as software modules. Through these efforts, the developed CNC system can be loaded on machine tools successfully.
Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.
Janghwan Kim;Min-Yong Jung;Da-Yun Lee;Na-Hyeon Cho;Jo-A Jin;R. Young-Chul Kim
International Journal of Internet, Broadcasting and Communication
/
v.15
no.3
/
pp.32-42
/
2023
There are serious problems worldwide, such as a pandemic due to an unprecedented infection caused by COVID-19. On previous approaches, they invented medical vaccines and preemptive testing tools for medical engineering. However, it is difficult to access poor medical systems and medical institutions due to disparities between countries and regions. In advanced nations, the damage was even greater due to high medical and examination costs because they did not go to the hospital. Therefore, from a software engineering-based perspective, we propose a learning model for determining coronavirus infection through symptom data-based software prediction models and tools. After a comparative analysis of various models (decision tree, Naive Bayes, KNN, multi-perceptron neural network), we decide to choose an appropriate decision tree model. Due to a lack of data, additional survey data and overseas symptom data are applied and built into the judgment model. To protect from thiswe also adapt human normalization approach with traditional Korean medicin approach. We expect to be possible to determine coronavirus, flu, allergy, and cold without medical examination and diagnosis tools through data collection and analysis by applying decision trees.
The research related to fault diagnosis in permanent magnet synchronous motors (PMSMs) has attracted considerable attention in recent years because various faults such as permanent magnet demagnetization and short-circuited turns can occur and result in unexpected failure of motor related system. Several conventional current and back electromotive force (BEMF) analysis techniques were proposed to detect certain faults in PMSMs; however, they generally deal with a single fault only. On the contrary, cases of multiple faults are common in PMSMs. We propose a fault diagnosis method for PMSMs with single and multiple combined faults. Our method uses three phase BEMF voltages based on the fast Fourier transform (FFT), support vector machine(SVM), and visualization tools for identifying fault types and severities in PMSMs. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are used to visualize the high-dimensional data into two-dimensional space. Experimental results show good visualization performance and high classification accuracy to identify fault types and severities for single and multiple faults in PMSMs.
The increase in the number of fatal electric accidents over the years has escalated the demand for specialized forensic engineers to determine their relevant technical causes. Likewise, the complexities associated with identifying the causes of electrocution accidents have prompted the General Department of Forensic Science and Criminology at Dubai Police to adopt a new methodology to diagnose electrocution accidents, consisting of an approach that involves medico-legal examination, electrical diagnosis of the evidence, and trace evidence analysis. This paper will discuss the application of the adopted method in further detail by unfolding two case reports. The first report outlines a case in which a worker got electrocuted at a construction site while attempting to turn on a lamp. The second case report involves the death of a technician in a workshop after trying to disconnect a washing machine from its plug. The methodology was utilized during the investigation of both cases, which were attended by the appointed forensic engineers and showed promising results.
Kim, Sung-Hun;Kim, Jae-Uk;Jeon, Young-Ju;Kim, Keun-Ho;Kim, Jong-Yoel
Journal of Physiology & Pathology in Korean Medicine
/
v.24
no.1
/
pp.42-47
/
2010
The pulse diagnosis is an important method in Oriental Medicine. Recently, there have been continuous attempts to replace the finger palpation by Oriental medical doctors (OMDs) by more objective tools based on machines, e.g., pulse analyzers. To improve the performance of the pulse analyzers, both the machine-appropriate interpretations for the pulse images appeared in the literature and the improvement in the repeatability and reproducibility of the measurement sensors are to be developed. As an attempt towards the transformation of the pulse images in terms of machine-appropriate language, in this work, we suggest an upgraded algorithm for the solid/deficient pulses, which are the two representative pulse images informing us how strong the pulse pressure is. It has been argued that one could determine the solid/deficient pulses by the maximum pulse pressure from pulse analyzers. However, by a clinical test, we found that the maximum pulse pressure alone is not sufficient to determine the solid/deficient pulses. In addition to the maximum pulse pressure, the mean pulse pressure averaged over for five different hold-down pressures(3-D MAC) is needed to improve the agreement with the OMD's decision for the solid/deficient pulse. We found that, among the data diagnosed with having either the solid pulse or deficient pulse by OMDs, the novel algorithm showed 86.0% diagnosis rate and 81.6% concordance rate.
Transactions of the Korean Society of Mechanical Engineers B
/
v.37
no.6
/
pp.551-558
/
2013
A support vector machine (SVM) is a very powerful classification algorithm when a set of training data, each marked as belonging to one of several categories, is given. Therefore, SVM techniques have been used as one of the diagnostic tools in machine learning as well as in pattern recognition. In this paper, we present the results of classifying ball bearing fault types and severities using SVM with an optimized feature set based on the minimum distance rule. A feature set as an input for SVM includes twelve time-domain and nine frequency-domain features that are extracted from the measured vibration signals and their decomposed details and approximations with discrete wavelet transform. The vibration signals were obtained from a test rig to simulate various bearing fault conditions.
International journal of advanced smart convergence
/
v.13
no.3
/
pp.150-155
/
2024
Genomic data plays a transformative role in medicine, biology, and forensic science, offering insights that drive advancements in clinical diagnosis, personalized medicine, and crime scene investigation. Despite its potential, the integration and analysis of diverse genomic datasets remain challenging due to compatibility issues and the specialized nature of existing tools. This paper presents the GenomeSync system, designed to overcome these limitations by utilizing the Hadoop framework for large-scale data handling and integration. GenomeSync enhances data accessibility and analysis through SQL-based search capabilities and machine learning techniques, facilitating the identification of genetic traits and the resolution of forensic cases. By pre-processing DNA profiles from crime scenes, the system calculates similarity scores to identify and aggregate related genomic data, enabling accurate prediction models and personalized treatment recommendations. GenomeSync offers greater flexibility and scalability, supporting complex analytical needs across industries. Its robust cloud-based infrastructure ensures data integrity and high performance, positioning GenomeSync as a crucial tool for reliable, data-driven decision-making in the genomic era.
Y. Wenjing;T. Yuhan;Y. Zhiang;T. Shanhui;L. Shijun;M. Sharaf
Advances in nano research
/
v.15
no.5
/
pp.451-466
/
2023
Gastrointestinal cancer (GC) is a prevalent malignant tumor of the digestive system that poses a severe health risk to humans. Due to the specific organ structure of the gastrointestinal system, both endoscopic and MRI diagnoses of GIC have limited sensitivity. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high recurrence rates in surgical and pharmacological therapy. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for the detection and treatment of cancer. Because of its deep location and complex surgery, diagnosing and treating gastrointestinal cancer is very difficult. The early diagnosis and urgent treatment of gastrointestinal illness are enabled by nanotechnology. As diagnostic and therapeutic tools, nanoparticles directly target tumor cells, allowing their detection and removal. XGBoost was used as a classification method known for achieving numerous winning solutions in data analysis competitions, to capture nonlinear relations among many input variables and outcomes using the boosting approach to machine learning. The research sample included 300 GC patients, comprising 190 males (72.2% of the sample) and 110 women (27.8%). Using convolutional neural networks (CNN) and artificial neural networks (ANN)-EXtreme Gradient Boosting (XGBoost), the patients mean± SD age was 50.42 ± 13.06. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.037), distant metastasis (P = 0.004), and tumor stage (P = 0.015) were shown to have a statistically significant link with GC patient survival. AUC was 0.92, sensitivity was 81.5%, specificity was 90.5%, and accuracy was 84.7 when analyzing stomach picture.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.11
/
pp.126-136
/
2018
The purpose of this study was to develop a severity-adjustment model for predicting mortality in acute stroke patients using machine learning. Using the Korean National Hospital Discharge In-depth Injury Survey from 2006 to 2015, the study population with disease code I60-I63 (KCD 7) were extracted for further analysis. Three tools were used for the severity-adjustment of comorbidity: the Charlson Comorbidity Index (CCI), the Elixhauser comorbidity index (ECI), and the Clinical Classification Software (CCS). The severity-adjustment models for mortality prediction in patients with acute stroke were developed using logistic regression, decision tree, neural network, and support vector machine methods. The most common comorbid disease in stroke patients were hypertension, uncomplicated (43.8%) in the ECI, and essential hypertension (43.9%) in the CCS. Among the CCI, ECI, and CCS, CCS had the highest AUC value. CCS was confirmed as the best severity correction tool. In addition, the AUC values for variables of CCS including main diagnosis, gender, age, hospitalization route, and existence of surgery were 0.808 for the logistic regression analysis, 0.785 for the decision tree, 0.809 for the neural network and 0.830 for the support vector machine. Therefore, the best predictive power was achieved by the support vector machine technique. The results of this study can be used in the establishment of health policy in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.