전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.
대표적인 소셜 네트워크 서비스(SNS)인 트위터의 내용을 분석하여 자동으로 트윗에 나타난 사용자의 감성을 분석하고자 한다. 기계학습 기법을 사용해서 감성 분석 모델을 생성하기 위해서는 각각의 트윗에 긍정 또는 부정을 나타내는 감성 레이블이 필요하다. 그러나 사람이 모든 트윗에 감성 레이블을 붙이는 것은 비용이 많이 소요되고, 실질적으로 불가능하다. 그래서 본 연구에서는 "감성 레이블이 있는 데이터"와 함께 "감성 레이블이 없는 데이터"도 활용하기 위해서 반감독 학습기법인 self-training 알고리즘을 적용하여 감성분석 모델을 생성한다. Self-training 알고리즘은 "레이블이 있는 데이터"의 레이블이 있는 데이터를 활용하여 "레이블이 없는 데이터"의 레이블을 확정하여 "레이블이 있는 데이터"를 확장하는 방식으로, 분류모델을 점진적으로 개선시키는 방식이다. 그러나 데이터의 레이블이 한번 확정되면 향후 학습에서 계속 사용되므로, 초기의 오류가 계속적으로 학습에 영향을 미치게 된다. 그러므로 조금 더 신중하게 "레이블이 없는 데이터"의 레이블을 결정할 필요가 있다. 본 논문에서는 self-training 알고리즘을 이용하여 보다 높은 정확도의 감성 분석 모델을 생성하기 위하여, self-training 중 "감성 레이블이 없는 데이터"의 레이블을 결정하여 "감성 레이블이 있는 데이터"로 확장하기 위한 3가지 정책을 제시하고, 각각의 성능을 비교 분석한다. 첫 번째 정책은 임계치를 고려하는 것이다. 분류 경계로부터 일정거리 이상 떨어져 있는 데이터를 선택하고자 하는 것이다. 두 번째 정책은 같은 개수의 긍/부정 데이터를 추가하는 것이다. 한쪽 감성에 해당하는 데이터에만 국한된 학습을 하는 것을 방지하기 위한 것이다. 세 번째 정책은 최대 개수를 고려하는 것이다. 한 번에 많은 양의 데이터가 "감성 레이블이 있는 데이터"에 추가되는 것을 방지하고 상위 몇%만 선택하기 위해서, 선택되는 데이터의 개수의 상한선을 정한 것이다. 실험은 긍정과 부정으로 분류되어 있는 트위터 데이터 셋인 Stanford data set에 적용하여 실험하였다. 그 결과 학습된 모델은 "감성 레이블이 있는 데이터" 만을 가지고 모델을 생성한 것보다 감성분석의 성능을 향상 시킬 수 있었고 3가지 정책을 적용한 방법의 효과를 입증하였다.
CRM의 하위 연구 분야로 진행되었던 고객이탈예측은 최근 비즈니스 머신러닝 기술의 발전으로 인해 빅데이터 기반의 퍼포먼스 마케팅 주제로 더욱 그 중요도가 높아지고 있다. 그러나, 기존의 관련 연구는 예측 모형 자체의 성능을 개선시키는 것이 주요 목적이었으며, 전체적인 고객이탈예측 프로세스를 개선하고자 하는 연구는 상대적으로 부족했다. 본 연구는 성공적인 고객이탈관리가 모형 자체의 성능보다는 전체 프로세스의 개선을 통해 더 잘 이루어질 수 있다는 가정하에, 이차원 고객충성도 세그먼트 기반의 고객이탈예측 프로세스 (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation)를 제안한다. CCP/2DL은 양방향, 즉 양적 및 질적 로열티 기반의 고객세분화를 시행하고, 고객세그먼트들을 이탈패턴에 따라 2차 그룹핑을 실시한 뒤, 이탈패턴 그룹별 이질적인 이탈예측 모형을 독립적으로 적용하는 일련의 이탈예측 프로세스이다. 제안한 이탈예측 프로세스의 상대적 우수성을 평가하기 위해 기존의 범용이탈예측 프로세스와 클러스터링 기반 이탈예측 프로세스와의 성능 비교를 수행하였다. 글로벌 NGO 단체인 A사의 협력으로 후원자 데이터를 활용한 분석과 검증을 수행했으며, 제안한 CCP/2DL의 성능이 다른 이탈예측 방법론보다 우수한 성능을 보이는 것으로 나타났다. 이러한 이탈예측 프로세스는 이탈예측에도 효과적일 뿐만 아니라, 다양한 고객통찰력을 확보하고, 관련된 다른 퍼포먼스 마케팅 활동을 수행할 수 있는 전략적 기반이 될 수 있다는 점에서 연구의 의의를 찾을 수 있다.
전자상거래 시장의 이용이 보편화 되며 고객들에게 좋은 품질의 물건을 어디서, 얼마나 합리적으로 구매할 수 있는지가 중요해졌다. 이러한 구매 심리의 변화는 방대한 정보 속에서 오히려 고객들의 구매 의사결정을 어렵게 만드는 경향이 있다. 이때 추천 시스템은 고객의 구매 행동을 분석하여 정보 검색에 드는 비용을 줄이고 만족도를 높이는 효과가 있다. 하지만 대부분 추천 시스템은 책이나 영화 등 동종 상품 분류 내에서만 추천이 이뤄진다. 왜냐하면 추천 시스템은 특정 상품에 매긴 구매 평점 데이터를 기반으로 해당 상품 분류 내 유사한 상품에 대한 구매 만족도를 추정하기 때문이다. 그밖에 추천 시스템에서 사용하는 구매 평점의 신뢰성에 대한 문제도 제시되고 있으며 오프라인에선 평점 확보 자체가 어렵다. 이에 본 연구에서는 일련의 문제를 개선하기 위해 RFM 다차원 분석 기법을 활용하여 기존에 사용하던 고객의 구매 평점을 객관적으로 대체할 수 있는 새로운 지표의 활용 가능성을 제안하는 바이다. 실제 기업의 구매 이력 데이터에 해당 지표를 적용해서 검증해본 결과 높게는 약 55%에 해당하는 정확도를 기록했다. 이는 총 4,386종에 달하는 이종 상품들 중 한번도 이용해 본 적 없는 상품을 추천한 결과이기 때문에 검증 결과는 상대적으로 높은 정확도와 활용가치를 의미한다. 그리고 본 연구는 오프라인의 다양한 상품데이터에서도 적용할 수 있는 범용적인 추천 시스템의 가능성을 시사한다. 향후 추가적인 데이터를 확보한다면 제안하는 추천 시스템의 정확도 향상도 기대할 수 있다.
현재 전세계 배터리 시장은 이차전지 개발에 박차를 가하고 있는 실정이지만, 실제로 소비되는 배터리 중 가격 대비 성능이 좋고 재충전을 통해 다시 재사용이 가능한 납축전지(이차전지)의 소비가 광범위하게 이루어지고 있다. 하지만 납축전지는 복합적 셀(cell)을 묶어 하나의 배터리를 구성하여 활용하는 배터리의 특성상 하나의 셀에서 열화가 발생하면 전체 배터리의 손상을 가져와 열화가 빨리 진행되는 문제가 존재한다. 이를 극복하기 위해 본 연구는 기계학습을 통한 배터리 상태 데이터를 학습하여 배터리 열화를 예측할 수 있는 모델을 개발하고자 한다. 이를 위해 실제 현장에서 배터리 상태를 지속적으로 모니터링 할 수 있는 센서를 골프장 카트에 부착하여 실시간으로 배터리 상태 데이터를 수집하고, 수집한 데이터를 이용하여 기계학습 기법을 적용한 분석을 통해 열화 전조 현상에 대한 예측 모델을 개발하였다. 총 16,883개의 샘플을 분석 데이터로 사용하였으며, 예측 모델을 만들기 위한 알고리즘으로 의사결정나무, 로지스틱, 베이지언, 배깅, 부스팅, RandomForest를 사용하였다. 실험 결과, 의사결정나무를 기본 알고리즘으로 사용한 배깅 모델이 89.3923%이 가장 높은 적중률을 보이는 것으로 나타났다. 본 연구는 날씨와 운전습관 등 배터리 열화에 영향을 줄 수 있는 추가적인 변수들을 고려하지 못했다는 한계점이 있으나, 이는 향후 연구에서 다루고자 한다. 본 연구에서 제안하는 배터리 열화 예측 모델은 배터리 열화의 전조현상을 사전에 예측함으로써 배터리 관리를 효율적으로 수행하고 이에 따른 비용을 획기적으로 줄일 수 있을 것으로 기대한다.
고밀도 도심지의 열섬현상이 도시 기온을 더 높이고 있으며 이로부터 대기오염 악화, 냉방 에너지 소비 증가 및 온실가스 배출 증대와 같은 부정적 영향들이 발생한다. 녹지의 추가 확보가 어려운 도시 환경에서 옥상녹화는 효율적인 온실가스 감축 전략이다. 본 연구에서는 열섬현상 현황 분석에서 더 나아가 고해상도 위성자료 및 공간정보를 활용하여 연구 지역 내 옥상녹화 가용면적 산정 후 옥상녹화가 가져오는 온도 분포 예측을 통한 열섬현상 완화도 및 이산화탄소 흡수량 평가를 수행하였다. 이를 위해 WorldView-2 위성자료를 활용하여 부산시 도시열섬 지역의 기존 토지피복을 분류하고 머신러닝 기법을 적용하여 옥상녹화 전 후 온도 분포 예측 모델을 개발하였다. 옥상녹화 면적 변화에 따른 열섬현상 완화도를 평가하기 위해 랜덤포레스트 기법을 통해 온도가 종속변수인 온도 분포 예측모델을 구축하였고, 이 과정에서 랜덤포레스트 모델의 훈련자료로 사용될 고해상도 지표 온도 도출을 위해 Google Earth Engine을 활용하여 Landsat-8과 Sentinel-2 위성자료를 융합하는 다중회귀모델을 적용하였다. 또한, 옥상녹화용 초본식생별 이산화탄소 흡수량을 기반으로 녹화 면적에 따른 이산화탄소 흡수량을 평가하였다. 연구 결과를 통해 개발된 위성자료 활용 도시 열섬현상 평가 및 랜덤포레스트 모델 기반 온도 분포 예측 기술은 도시열섬 취약 지역에 확대 적용이 가능할 것으로 기대된다.
ICT 인프라의 이상탐지를 통한 유지보수와 장애 예방이 중요해지고 있다. 장애 예방을 위해서 이상탐지에 대한 관심이 높아지고 있으며, 지금까지의 다양한 이상탐지 기법 중 최근 연구들에서는 딥러닝을 활용하고 있으며 오토인코더를 활용한 모델을 제안하고 있다. 이는 오토인코더가 다차원 다변량에 대해서도 효과적으로 처리가 가능하다는 것이다. 한편 학습 시에는 많은 컴퓨터 자원이 소모되지만 추론과정에서는 연산을 빠르게 수행할 수 있어 실시간 스트리밍 서비스가 가능하다. 본 연구에서는 기존 연구들과 달리 오토인코더에 2가지 요소를 가미하여 이상탐지의 성능을 높이고자 하였다. 먼저 다차원 데이터가 가지고 있는 속성별 특징을 최대한 부각하여 활용하기 위해 멀티모달 개념을 적용한 멀티모달 오토인코더를 적용하였다. CPU, Memory, network 등 서로 연관이 있는 지표들을 묶어 5개의 모달로 구성하여 학습 성능을 높이고자 하였다. 또한, 시계열 데이터의 특징을 데이터의 차원을 늘리지 않고 효과적으로 학습하기 위하여 조건부 오토인코더(conditional autoencoder) 구조를 활용하는 조건부 멀티모달 오토인코더(Conditional Multimodal Autoencoder, CMAE)를 제안하였다. 제안한 CAME 모델은 비교 실험을 통해 검증했으며, 기존 연구들에서 많이 활용된 오토인코더와 비교하여 AUC, Accuracy, Precision, Recall, F1-score의 성능 평가를 진행한 결과 유니모달 오토인코더(UAE)와 멀티모달 오토인코더(Multimodal Autoencoder, MAE)의 성능을 상회하는 결과를 얻어 이상탐지에 있어 효과적이라는 것을 확인하였다.
본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 살아있는 장애인들을 위하여, 생각만으로 외부의 장치를 제어할 수 있도록 하는 뇌-컴퓨터 인터페이스(BCI: Brain-Computer Interface) 기술을 연구하였다. 신경생리학 분야에서의 연구 결과에 의하면, 신체를 움직이는 상상을 할 경우, 뇌의 운동/감각 피질 영역에서는 $\beta$파(14-26 Hz)와 $\mu$파(8-12 Hz)가 억제/증가되는 ERD/ERS(Event-Related Desynchronization / Synchronization) 현상이 발생한다고 알려져 있다. 본 연구에서는 이를 기반으로 혀, 발, 왼손, 오른손의 동작 상상을 자극으로 이용하여 변화하는 뇌 신호 패턴을 실시간으로 분석하여 피험자의 생각을 읽을 수 있도록 하였으며, 상 하 좌 우의 네 방향으로 이동할 수 있도록 하는 마우스 제어 인터페이스를 구현하였다. 동작 상상 시 발생하는 뇌 신경 활동의 변화를 관측하기 위해서 뇌에 손상을 주지 않으면서도 높은 시간 해상도로 측정이 가능한 비침습적 뇌전도(EEG: ElectroEncephaloGraphy)를 이용하였다. 그러나 뇌전도 신호는 특성상 신호의 크기가 미약하고, 잡음의 영향을 많아 분석이 어렵다. 따라서 이를 극복하기 위해 통계적 방법을 기반으로 한 기계학습 기법인 CSP(Common Spatial Pattern)와 선형판별 분석(Linear Discriminant Analysis)을 이용하여 서로 다른 동작 상상에 의해 발생하는 뇌 신호들 간의 분산이 최대가 되도록 신호를 변환하여 인식 성능을 높일 수 있었다. 또한 분석된 뇌 신호의 시각화를 통해, 기존에 알려진 뇌의 해부학적, 신경생리학적 지식과 일치하는 ERD/ERS 현상이 발생하는 것을 확인할 수 있었다.
추천시스템(recommender system)은 고객의 선호도를 예측하여 상품과 서비스를 제공하는 기법으로, 현재 다양한 온라인 서비스에 활용되고 있다. 이와 관련된 많은 선행 연구들은 협업필터링(collaborative filtering)에 기반한 추천시스템을 제안하였는데, 대부분의 경우 고객의 구매 내역 또는 평점 데이터만 사용하여 진행되었다. 오늘날 소비자들은 제품을 구매하는 과정에서 온라인 검색 행동을 하여 관심있는 제품을 찾는다. 그렇기 때문에 검색 키워드 데이터는 고객의 선호도를 파악하는데 매우 유용한 정보일 수 있다. 그러나 지금까지 추천시스템 연구에서 사용되는 경우는 거의 없었다. 이에 본 연구는 고객의 검색 행동에 주목하여 온라인 쇼핑몰 고객의 검색 키워드 데이터와 구매 데이터를 고려한 하이브리드 협업 필터링을 제안하였다. 본 연구는 제안된 모델의 적용 가능성을 검증하기 위해 실제 온라인 쇼핑몰 데이터를 사용하여 성능을 검증하였다. 연구 결과, 추천 상품의 개수가 많아질수록 고객의 검색 키워드를 기반으로 구축된 협업필터링의 추천 성능이 향상되는 반면 일반적인 협업필터링의 성능은 추천된 상품의 개수가 많아질수록 점차 감소함을 발견하였다. 따라서 본 연구는 검색 키워드 데이터를 활용한 하이브리드 협업필터링이 고객의 선호도를 반영한 추천할 수 있으며, 구매이력 데이터의 정보부족을 해결할 수 있음을 확인하였다. 이는 기존의 정량 데이터만을 활용한 추천 시스템이 아닌, 비정형 데이터인 텍스트를 사용함으로써 새로운 하이브리드 협업필터링 구축 방법을 제안했다는 점에서 의의가 있다.
배급사가 소매점을 통해 게임을 유통했던 과거와 다르게 현재는 디지털 콘텐츠인 게임을 온라인 기반의 유통채널을 활용하여 판매를 실시하고 있다. 본 연구는 온라인 디지털 콘텐츠 유통 채널인 스팀(Steam)에서 판매되는 게임의 판매량에 대해서 eWOM(전자구전효과)의 요인들이 어떤 영향을 미치는지 분석한다. 최근 빅데이터 기반의 데이터 마이닝 기법을 이용한 연구가 많이 진행되고 있는데, 본 연구에서 eWOM의 요인 중 각 리뷰의 감성을 분석할 수 있는 텍스트 마이닝 기법인 감성분석을 실시하여 eWOM의 감성지수를 도출한다. 감성분석은 나이브 베이즈(Naive Bayes)와 지지벡터기(SVM) 분류기를 활용하고, 정확도가 높은 지지벡터기(SVM) 분류기를 통해 감성지수를 산출한다. 도출한 감성지수와 eWOM의 크기인 각 게임의 리뷰의 수, eWOM의 평점인 각 게임의 유저점수를 독립변수로 하여 종속변수인 판매변화량에 대해서 회귀분석을 실시한다. 회귀분석 결과, 독립변수인 eWOM의 크기와 eWOM의 감성지수가 종속변수인 판매변화량에 영향을 미치는 것을 확인하였다. 본 연구는 연구결과를 통해 국내 게임 기업들이 스팀을 기반으로 해외진출 시 판매량에 영향을 미치는 eWOM의 요인들을 제시할 수 있는 시사점을 가진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.