Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
Steel and Composite Structures
/
제49권1호
/
pp.65-79
/
2023
This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.
Although a universally accepted definition of artificial intelligence (AI) remains elusive, the terminology has gained widespread familiarity owing to its pervasive integration across diverse domains in our daily lives. The application of AI in healthcare, notably in radiographic imaging, is no longer a matter of science fiction but a reality. Consequently, AI education has emerged as an indispensable requirement for radiological technologists responsible for the field of radiology. This paper underscores this imperative and advocates for the incorporation of AI education, using the Orange platform in university radiology department as part of the solution. Furthermore, this paper presents a case study featuring machine learning analysis using structured data on exposure doses for radiation related workers and unstructured data consisting of X-ray data encompassing 69 COVID-19-infected cases and 25 individuals with normal findings. The emphasized importance of AI education for radiology professionals in this research is expected to contribute to the job stability of radiologic practitioners in the future.
본 연구는 교육대학원에서의 인공지능 교육 과목의 운영사례이다. 교육 과정은 머신러닝의 이해와 실습, 데이터 분석, 엔트리를 이용한 인공지능의 실제, 인공지능과 피지컬 컴퓨팅 등으로 구성되었다. 교육효과에 대한 설문 조사 결과, 수강생들은 초등학교 현장으로의 적용 용이성과 수업 우선순위로 엔트리 인공지능 블록의 활용, 피지컬 컴퓨팅 도구로써 대장장이 보드의 활용을 선호하였다. 데이터 분석 영역은 수학교과의 데이터와 그래프 교육과의 연계 등에서 그 효과성이 있으며. 피지컬 컴퓨팅 도구로 허스키 렌즈는 고유의 이미지 처리 기능을 활용하면 자율주행차 메이커 교육에 유용한 것으로 나타났다. 바람직한 인공지능교육으로는 수준별 교육과정, 데이터 수집 및 분석 교육의 강화 등이 요구되었다.
International Journal of Computer Science & Network Security
/
제22권9호
/
pp.334-342
/
2022
Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.
International Journal of Advanced Culture Technology
/
제11권1호
/
pp.312-319
/
2023
This study aims to enhance the engineering education for non-majors by incorporating the concept of Global Citizenship Education and addressing the need for education that responds to climate and ecological changes. The study uses robot programming as a tool to foster the development of global citizens. Non-majors often struggle with producing more than just motionless forms or solid productions, due to a lack of understanding of mechanisms and coding. The study proposes the use of the Convergence D-SteamRobot (DSR) to address this issue by blending humanities and engineering. This is achieved by presenting problems through books to increase empathy, integrating simple machine mechanisms, and creating prototypes to solve self-defined problems. Through this process, learners determine the SDGs topic they want to solve and learn about the simple mechanical mechanism involved in producing the prototype. The educational model provides a constructivist learning environment that emphasizes empathy and exploration, encourages peer-learning, and improves divergent thinking and problem-solving skills.
본 연구는 교육 대학원의 인공 지능 교육 과목의 운영사례이다. 주요 교육내용은 머신러닝의 이해와 실습, 데이터 분석, 엔트리를 이용한 인공지능의 실제, 인공지능과 피지컬 컴퓨팅 등으로 구성되었다. 교육과정 적용후 교육효과에 대한 설문 조사 결과, 수강생들은 초등교육 현장에 적용 용이성 등을 고려하여 우선순위로 엔트리 인공지능 블록의 활용, 피지컬 컴퓨팅 도구로써 대장장이 보드의 활용 등을 선호함을 알 수 있었다. 데이터 분석 영역은 수학교과의 데이터와 그래프 교육과의 연계 등에서 그 효과성이 있으며. 피지컬 컴퓨팅 도구로 허스키 렌즈는 고유의 이미지 처리 기능을 활용하면 자율주행차 메이커 교육에 유용하다고 하였다. 그 외의 바람직한 인공지능교육으로 수준별 교육과정, 데이터 수집 및 분석 교육의 강화 등의 필요성이 대두되었다.
최근에 새로운 교수 학습 방법의 하나로 대두되고 있는 e-NIE는 학습자 중심의 흥미와 적성, 창의성 개발, 비판적 사고력의 함양을 통한 문제해결능력과 의사결정 능력을 키워 준다. 본 논문에서는 공업계 고등학교 전기과의 '전기 전자 측정' 과목 중에서 'I. 측정 일반' 단원을 중심으로 보충 심화 학습지를 개발하였으며, 이를 활용한 e-NIE 수업 모형을 설계하고 구현하였다. 본 논문에서 제안한 e-NIE 수업 모형의 효과를 검증하기 위하여 통제 집단에게는 전통적 수업을 실시하고 실험 집단에게는 e-NIE 수업을 실시한 후 결과를 분석하였다. 그 결과 e-NIE 수업을 실시한 학습자들이 학습 동기, 학습 태도, 자기 주도적 탐구력 분야에서 긍정적인 효과가 있는 것으로 확인되었다.
International Journal of Computer Science & Network Security
/
제22권12호
/
pp.229-238
/
2022
Due to digitization, data has become a tsunami in almost every data-driven business sector. The information wave has been greatly boosted by man-to-machine (M2M) digital data management. An explosion in the use of ICT for farm management has pushed technical solutions into rural areas and benefited farmers and customers alike. This study discusses the benefits and possible pitfalls of using information and communication technology (ICT) in conventional farming. Information technology (IT), the Internet of Things (IoT), and robotics are discussed, along with the roles of Machine learning (ML), Artificial intelligence (AI), and sensors in farming. Drones are also being studied for crop surveillance and yield optimization management. Global and state-of-the-art Internet of Things (IoT) agricultural platforms are emphasized when relevant. This article analyse the most current publications pertaining to precision agriculture using ML and AI techniques. This study further details about current and future developments in AI and identify existing and prospective research concerns in AI for agriculture based on this thorough extensive literature evaluation.
This article proposes to examine how the study of failure differs from other technical subjects, and how to turn failure experiences to one's advantage. The authors surveyed the properties of failures in PBL (Project Based Learning) and also examined students' interest and understanding of failure, after introducing failure examples. To investigate how students communicate failure experiences to third parties, reports of the failure experience in PBL were evaluated. From above mentioned surveys, we get the following results. The typical causes of failure in educational institutions are lack of skill in manufacturing and inadequate planning, which conversely are minor causes of failure in the industry. A knowledge database on failure, employed commonly in industry, is not effective in PBL, because projects in educational institutes are usually changed every year. Case studies in failure can be approached from many points of view including causes, processes, effects and safety measures. While teachers should emphasize the notable points in the failure examples in introducing examples of specific topics in machine design, teachers should explain the multiple aspects in the failure examples to educate students about the complexity of actual accidents.
최근 대부분의 기업에서 인적 자원의 유출이 조직에 미칠 부정적인 영향을 인지하게 되면서 조직 구성원의 이직 및 퇴직의도에 대해 많은 연구가 이루어졌다. 그러나 대부분 설문조사의 형태로 이루어지며, 직장 생활 데이터를 기반으로 이직 또는 퇴직의도를 살펴본 연구는 아직까지 미비했다. 이에 본 연구에서는 직장 생활 프로파일을 기반으로 직원의 퇴직 여부에 영향을 미치는 요인에 대한 분석을 실시하고, 기계 학습 방법을 활용하여 퇴직 예측 모델을 생성했다. 이 결과, 기존의 설문조사를 중심으로 수행되었던 연구에서 접근하지 못했던 다양한 요인들을 파악할 수 있었다. 또한, 우수한 성능의 퇴직 예측 모델 생성을 통해 기업의 인적 자원 유출에 대한 해결방안을 제시할 수 있는 연구의 발판을 마련했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.