• Title/Summary/Keyword: Machine Learning Education

Search Result 313, Processing Time 0.028 seconds

Analysis of Machine Learning Education Tool for Kids

  • Lee, Yo-Seob;Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.235-241
    • /
    • 2020
  • Artificial intelligence and machine learning are used in many parts of our daily lives, but the basic processes and concepts are barely exposed to most people. Understanding these basic concepts is becoming increasingly important as kids don't have the opportunity to explore AI processes and improve their understanding of basic machine learning concepts and their essential components. Machine learning educational tools can help children easily understand artificial intelligence and machine learning. In this paper, we examine machine learning education tools and compare their features.

A Machine Learning Model Learning and Utilization Education Curriculum for Non-majors (비전공자 대상 머신러닝 모델 학습 및 활용교육 커리큘럼)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • In this paper, a basic machine learning model learning and utilization education curriculum for non-majors is proposed, and an education method using Orange machine learning model learning and analysis tools is proposed. Orange is an open-source machine learning and data visualization tool that can create machine learning models by learning data using visual widgets without complex programming. Orange is a platform that is widely used by non-major undergraduates to expert groups. In this paper, a basic machine learning model learning and utilization education curriculum and weekly practice contents for one semester are proposed. In addition, in order to demonstrate the reality of practice contents for machine learning model learning and utilization, we used the Orange tool to learn machine learning models from categorical data samples and numerical data samples, and utilized the models. Thus, use cases for predicting the outcome of the population were proposed. Finally, the educational satisfaction of this curriculum is surveyed and analyzed for non-majors.

A Case Study on the Application of Plant Classification Learning for 4th Grade Elementary School Using Machine Learning in Online Learning (온라인 학습에서 머신러닝을 활용한 초등 4학년 식물 분류 학습의 적용 사례 연구)

  • Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.1
    • /
    • pp.66-80
    • /
    • 2021
  • This study is a case study that applies plant classification learning using machine learning to fourth graders in elementary school in online learning situations. In this study, a plant classification learning education program associated with 2015 revision science curriculum was developed by applying the Artificial Intelligence biological classification teaching Learning model. The study participants were 31 fourth graders who agreed to participate voluntarily. Plant classification learning using machine learning was applied six hours for three weeks. The results of this study are as follows. First, as a result of image analysis on artificial intelligence, participants were mainly aware of artificial intelligence as mechanical (27%), human (23%) and household goods (23%). Second, an artificial intelligence recognition survey by semantic discrimination found that artificial intelligence was recognized as smart, good, accurate, new, interesting, necessary, and diverse. Third, there was a difference between men and women in perception and emotion of artificial intelligence, and there was no difference in perception of the ability of artificial intelligence. Fourth, plant classification learning using machine learning in this study influenced changes in artificial intelligence perception. Fifth, plant classification learning using machine learning in this study had a positive effect on reasoning ability.

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.

Machine Learning Method in Medical Education: Focusing on Research Case of Press Frame on Asbestos (의학교육에서 기계학습방법 교육: 석면 언론 프레임 연구사례를 중심으로)

  • Kim, Junhewk;Heo, So-Yun;Kang, Shin-Ik;Kim, Geon-Il;Kang, Dongmug
    • Korean Medical Education Review
    • /
    • v.19 no.3
    • /
    • pp.158-168
    • /
    • 2017
  • There is a more urgent call for educational methods of machine learning in medical education, and therefore, new approaches of teaching and researching machine learning in medicine are needed. This paper presents a case using machine learning through text analysis. Topic modeling of news articles with the keyword 'asbestos' were examined. Two hypotheses were tested using this method, and the process of machine learning of texts is illustrated through this example. Using an automated text analysis method, all the news articles published from January 1, 1990 to November 15, 2016 in South Korea which included 'asbestos' in the title and the body were collected by web scraping. Differences in topics were analyzed by structured topic modelling (STM) and compared by press companies and periods. More articles were found in liberal media outlets. Differences were found in the number and types of topics in the articles according to the partisanship and period. STM showed that the conservative press views asbestos as a personal problem, while the progressive press views asbestos as a social problem. A divergence in the perspective for emphasizing the issues of asbestos between the conservative press and progressive press was also found. Social perspective influences the main topics of news stories. Thus, the patients' uneasiness and pain are not presented by both sources of media. In addition, topics differ between news media sources based on partisanship, and therefore cause divergence in readers' framing. The method of text analysis and its strengths and weaknesses are explained, and an application for the teaching and researching of machine learning in medical education using the methodology of text analysis is considered. An educational method of machine learning in medical education is urgent for future generations.

Artificial intelligence, machine learning, and deep learning in women's health nursing

  • Jeong, Geum Hee
    • Women's Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.5-9
    • /
    • 2020
  • Artificial intelligence (AI), which includes machine learning and deep learning has been introduced to nursing care in recent years. The present study reviews the following topics: the concepts of AI, machine learning, and deep learning; examples of AI-based nursing research; the necessity of education on AI in nursing schools; and the areas of nursing care where AI is useful. AI refers to an intelligent system consisting not of a human, but a machine. Machine learning refers to computers' ability to learn without being explicitly programmed. Deep learning is a subset of machine learning that uses artificial neural networks consisting of multiple hidden layers. It is suggested that the educational curriculum should include big data, the concept of AI, algorithms and models of machine learning, the model of deep learning, and coding practice. The standard curriculum should be organized by the nursing society. An example of an area of nursing care where AI is useful is prenatal nursing interventions based on pregnant women's nursing records and AI-based prediction of the risk of delivery according to pregnant women's age. Nurses should be able to cope with the rapidly developing environment of nursing care influenced by AI and should understand how to apply AI in their field. It is time for Korean nurses to take steps to become familiar with AI in their research, education, and practice.

Machine Learning Based Neighbor Path Selection Model in a Communication Network

  • Lee, Yong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 2021
  • Neighbor path selection is to pre-select alternate routes in case geographically correlated failures occur simultaneously on the communication network. Conventional heuristic-based algorithms no longer improve solutions because they cannot sufficiently utilize historical failure information. We present a novel solution model for neighbor path selection by using machine learning technique. Our proposed machine learning neighbor path selection (ML-NPS) model is composed of five modules- random graph generation, data set creation, machine learning modeling, neighbor path prediction, and path information acquisition. It is implemented by Python with Keras on Tensorflow and executed on the tiny computer, Raspberry PI 4B. Performance evaluations via numerical simulation show that the neighbor path communication success probability of our model is better than that of the conventional heuristic by 26% on the average.

A Study on Learning Mathematics for Machine Learning

  • Jun, Sang Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.257-263
    • /
    • 2019
  • This paper is a study on mathematical aspects that can be basic for understanding and applying the contents of machine learning. If you are familiar with mathematics in the field of computer science, you can create algorithms that can diversify researches and implement them faster, so you can implement many real-life ideas. There is no curriculum standard for mathematics in the field of machine learning, and there are many absolutely lacking mathematical contents that are taught in the curriculum presented at existing universities. Machine learning now includes speech recognition systems, search engines, automatic driving systems, process automation, object recognition, and more. Many applications that you want to implement combine a large amount of data with many variables into the components that the programmer generates. In this course, the mathematical areas required for computer engineer (CS) practitioners and computer engineering educators have become diverse and complex. It is important to analyze the mathematical content required by engineers and educators and the mathematics required in the field. This paper attempts to present an effective range design for the essential processes from the basic education content to the deepening education content for the development of many researches.

Learning Method of Data Bias employing MachineLearningforKids: Case of AI Baseball Umpire (머신러닝포키즈를 활용한 데이터 편향 인식 학습: AI야구심판 사례)

  • Kim, Hyo-eun
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.273-284
    • /
    • 2022
  • The goal of this paper is to propose the use of machine learning platforms in education to train learners to recognize data biases. Learners can cultivate the ability to recognize when learners deal with AI data and systems when they want to prevent damage caused by data bias. Specifically, this paper presents a method of data bias education using MachineLearningforKids, focusing on the case of AI baseball referee. Learners take the steps of selecting a specific topic, reviewing prior research, inputting biased/unbiased data on a machine learning platform, composing test data, comparing the results of machine learning, and present implications. Learners can learn that AI data bias should be minimized and the impact of data collection and selection on society. This learning method has the significance of promoting the ease of problem-based self-directed learning, the possibility of combining with coding education, and the combination of humanities and social topics with artificial intelligence literacy.

Development of an impact Identification Program in Mathematical Education Research Using Machine Learning and Network (기계학습과 네트워크를 이용한 수학교육 연구의 영향력 판별 프로그램 개발)

  • Oh, Se Jun;Kwon, Oh Nam
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.21-45
    • /
    • 2023
  • This study presents a machine learning program designed to identify impactful papers in the field of mathematics education. To achieve this objective, we examined the impact of papers from a scientific econometrics perspective, developed a mathematics education research network, and defined the impact of mathematics education research using PageRank, a network centrality index. We developed a machine learning model to determine the impact of mathematics education research and identified the journals with the highest percentage of impactful articles to be the Journal for Research in Mathematics Education (25.66%), Educational Studies in Mathematics (22.12%), Zentralblatt für Didaktik der Mathematik (8.46%), Journal of Mathematics Teacher Education (5.8%), and Journal of Mathematical Behaviour (5.51%). The results of the machine learning program were similar to the findings of previous studies that were read and evaluated qualitatively by experts in mathematics education. Significantly, the AI-assisted impact evaluation of mathematics education research, which typically requires significant human resources and time, was carried out efficiently in this study.